Skip main navigation

Admission Brain Cortical Volume

An Independent Determinant of Poststroke Cognitive Vulnerability
Originally publishedhttps://doi.org/10.1161/STROKEAHA.117.017646Stroke. 2017;48:2113–2120

Background and Purpose—

Several markers of poststroke cognitive impairment have been reported. The role of brain cortical volume remains uncertain. The aim of this study was to evaluate the influence of brain cortical volume on cognitive outcomes using a voxel-based morphometry approach in subjects without prestroke dementia.

Methods—

Ischemic stroke patients were prospectively recruited 24 to 72 hours post stroke (M0). Cognition was evaluated at M0, 3 months, and 1 year (M12) using the Montreal Cognitive Assessment, the Isaacs set test, and the Zazzo’s cancellation task. A 3-T brain magnetic resonance imaging was performed at M0. Grey matter (GM) was segmented using Statistical Parametric Mapping 12 software. Association between global GM volume and cognitive score slopes between M0 and M12 was evaluated using a linear mixed model. Correlations between focal GM volumes and changes in cognitive performance were evaluated using Statistical Parametric Mapping 12.

Results—

Two-hundred forty-eight patients were included (mean age 65±SD 14 years old, 66% men). Global GM volume was significantly associated with changes in Montreal Cognitive Assessment scores (β=0.01; P=0.04) and in the number of errors on the Zazzo’s cancellation task (β=−0.02; P=0.04) independently of other clinical/radiological confounders. Subjects with lower GM volumes in the left fronto-temporo-insular cortex were more vulnerable to transient Montreal Cognitive Assessment and Isaacs set test impairment. Subjects with lower GM volumes in right temporo-insular cortex, together with basal ganglia, were more vulnerable to transient cognitive impairment on the Zazzo’s cancellation task.

Conclusions—

Smaller cortical volumes in fronto-temporo-insular areas measured 24 to 72 hours post stroke are associated with cognitive vulnerability in the subacute stroke phase.

Footnotes

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.117.017646/-/DC1.

Correspondence to Igor Sibon, MD, PhD, Unité Neuro-vasculaire, Hôpital Pellegrin, 33076 Bordeaux, France. E-mail

References

  • 1. Pendlebury ST, Markwick A, de Jager CA, Zamboni G, Wilcock GK, Rothwell PM. Differences in cognitive profile between TIA, stroke and elderly memory research subjects: a comparison of the MMSE and MoCA.Cerebrovasc Dis. 2012; 34:48–54. doi: 10.1159/000338905.CrossrefMedlineGoogle Scholar
  • 2. Nijsse B, Visser-Meily JM, van Mierlo ML, Post MW, de Kort PL, van Heugten CM. Temporal evolution of poststroke cognitive impairment using the Montreal Cognitive Assessment.Stroke. 2017; 48:98–104. doi: 10.1161/STROKEAHA.116.014168.LinkGoogle Scholar
  • 3. Snaphaan L, de Leeuw FE. Poststroke memory function in nondemented patients: a systematic review on frequency and neuroimaging correlates.Stroke. 2007; 38:198–203. doi: 10.1161/01.STR.0000251842.34322.8f.LinkGoogle Scholar
  • 4. Dufouil C, Godin O, Chalmers J, Coskun O, MacMahon S, Tzourio-Mazoyer N, et al; PROGRESS MRI Substudy Investigators. Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history.Stroke. 2009; 40:2219–2221. doi: 10.1161/STROKEAHA.108.540633.LinkGoogle Scholar
  • 5. Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study.Stroke. 2010; 41:600–606. doi: 10.1161/STROKEAHA.109.570044.LinkGoogle Scholar
  • 6. Tuladhar AM, Reid AT, Shumskaya E, de Laat KF, van Norden AG, van Dijk EJ, et al. Relationship between white matter hyperintensities, cortical thickness, and cognition.Stroke. 2015; 46:425–432. doi: 10.1161/STROKEAHA.114.007146.LinkGoogle Scholar
  • 7. Muller M, Appelman AP, van der Graaf Y, Vincken KL, Mali WP, Geerlings MI. Brain atrophy and cognition: interaction with cerebrovascular pathology?Neurobiol Aging. 2011; 32:885–893. doi: 10.1016/j.neurobiolaging.2009.05.005.CrossrefMedlineGoogle Scholar
  • 8. Schmidt R, Ropele S, Enzinger C, Petrovic K, Smith S, Schmidt H, et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study.Ann Neurol. 2005; 58:610–616. doi: 10.1002/ana.20630.CrossrefMedlineGoogle Scholar
  • 9. Firbank MJ, Burton EJ, Barber R, Stephens S, Kenny RA, Ballard C, et al. Medial temporal atrophy rather than white matter hyperintensities predict cognitive decline in stroke survivors.Neurobiol Aging. 2007; 28:1664–1669. doi: 10.1016/j.neurobiolaging.2006.07.009.CrossrefMedlineGoogle Scholar
  • 10. Pohjasvaara T, Mäntylä R, Salonen O, Aronen HJ, Ylikoski R, Hietanen M, et al. How complex interactions of ischemic brain infarcts, white matter lesions, and atrophy relate to poststroke dementia.Arch Neurol. 2000; 57:1295–1300.CrossrefMedlineGoogle Scholar
  • 11. Tang WK, Chan SS, Chiu HF, Ungvari GS, Wong KS, Kwok TC, et al. Frequency and determinants of poststroke dementia in Chinese.Stroke. 2004; 35:930–935. doi: 10.1161/01.STR.0000119752.74880.5B.LinkGoogle Scholar
  • 12. Jorm AF. The Informant Questionnaire on cognitive decline in the elderly (IQCODE): a review.Int Psychogeriatr. 2004; 16:275–293.CrossrefMedlineGoogle Scholar
  • 13. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment.J Am Geriatr Soc. 2005; 53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.CrossrefMedlineGoogle Scholar
  • 14. Isaacs B, Kennie AT. The Set test as an aid to the detection of dementia in old people.Br J Psychiatry. 1973; 123:467–470.CrossrefMedlineGoogle Scholar
  • 15. Zazzo R. Manuel pour l’examen psychologique de l’enfant. Neuchâtel, Switzerland: Delachaux et Niestlé; 1969.Google Scholar
  • 16. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network.Magn Reson Imaging. 2012; 30:1323–1341. doi: 10.1016/j.mri.2012.05.001.CrossrefMedlineGoogle Scholar
  • 17. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.Med Image Anal. 2008; 12:26–41. doi: 10.1016/j.media.2007.06.004.CrossrefMedlineGoogle Scholar
  • 18. Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis.Neuroimage. 2012; 59:3774–3783. doi: 10.1016/j.neuroimage.2011.11.032.CrossrefMedlineGoogle Scholar
  • 19. Ashburner J, Friston KJ. Voxel-based morphometry–the methods.Neuroimage. 2000; 11(6 pt 1):805–821. doi: 10.1006/nimg.2000.0582.CrossrefMedlineGoogle Scholar
  • 20. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.Neuroimage. 2002; 15:273–289. doi: 10.1006/nimg.2001.0978.CrossrefMedlineGoogle Scholar
  • 21. Chu R, Thabane L, Ma J, Holbrook A, Pullenayegum E, Devereaux PJ. Comparing methods to estimate treatment effects on a continuous outcome in multicentre randomized controlled trials: a simulation study.BMC Med Res Methodol. 2011; 11:21. doi: 10.1186/1471-2288-11-21.CrossrefMedlineGoogle Scholar
  • 22. Oldenbeuving AW, de Kort PL, Jansen BP, Roks G, Kappelle LJ. Delirium in acute stroke: a review.Int J Stroke. 2007; 2:270–275. doi: 10.1111/j.1747-4949.2007.00163.x.CrossrefMedlineGoogle Scholar
  • 23. Del Brutto OH, Mera RM, Cagino K, Fanning KD, Milla-Martinez MF, Nieves JL, et al. Neuroimaging signatures of frailty: a population-based study in community-dwelling older adults (the Atahualpa Project).Geriatr Gerontol Int. 2017; 17:270–276. doi: 10.1111/ggi.12708.CrossrefMedlineGoogle Scholar
  • 24. Oldenbeuving AW, de Kort PL, Jansen BP, Algra A, Kappelle LJ, Roks G. Delirium in the acute phase after stroke: incidence, risk factors, and outcome.Neurology. 2011; 76:993–999. doi: 10.1212/WNL.0b013e318210411f.CrossrefMedlineGoogle Scholar
  • 25. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis.Lancet Neurol. 2009; 8:1006–1018. doi: 10.1016/S1474-4422(09)70236-4.CrossrefMedlineGoogle Scholar
  • 26. Nys GM, van Zandvoort MJ, de Kort PL, Jansen BP, de Haan EH, Kappelle LJ. Cognitive disorders in acute stroke: prevalence and clinical determinants.Cerebrovasc Dis. 2007; 23:408–416. doi: 10.1159/000101464.CrossrefMedlineGoogle Scholar
  • 27. Fiebach CJ, Schlesewsky M, Lohmann G, von Cramon DY, Friederici AD. Revisiting the role of Broca’s area in sentence processing: syntactic integration versus syntactic working memory.Hum Brain Mapp. 2005; 24:79–91. doi: 10.1002/hbm.20070.CrossrefMedlineGoogle Scholar
  • 28. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain.Nat Rev Neurosci. 2002; 3:201–215. doi: 10.1038/nrn755.CrossrefMedlineGoogle Scholar
  • 29. Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies.J Cogn Neurosci. 2000; 12:1–47.CrossrefMedlineGoogle Scholar
  • 30. Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference.Cereb Cortex. 2013; 23:739–749. doi: 10.1093/cercor/bhs065.CrossrefMedlineGoogle Scholar
  • 31. Squire LR, Stark CE, Clark RE. The medial temporal lobe.Annu Rev Neurosci. 2004; 27:279–306. doi: 10.1146/annurev.neuro.27.070203.144130.CrossrefMedlineGoogle Scholar
  • 32. Ruscheweyh R, Deppe M, Lohmann H, Wersching H, Korsukewitz C, Duning T, et al. Executive performance is related to regional gray matter volume in healthy older individuals.Hum Brain Mapp. 2013; 34:3333–3346. doi: 10.1002/hbm.22146.CrossrefMedlineGoogle Scholar
  • 33. McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B. Network analysis of cortical visual pathways mapped with PET.J Neurosci. 1994; 14:655–666.CrossrefMedlineGoogle Scholar
  • 34. Stern Y. Cognitive reserve and Alzheimer disease.Alzheimer Dis Assoc Disord. 2006; 20(3 suppl 2):S69–S74.CrossrefMedlineGoogle Scholar
  • 35. Amieva H, Mokri H, Le Goff M, Meillon C, Jacqmin-Gadda H, Foubert-Samier A, et al. Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: a study of 20 years of cognitive decline.Brain. 2014; 137(pt 4):1167–1175. doi: 10.1093/brain/awu035.CrossrefMedlineGoogle Scholar

eLetters(0)

eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.