NEW METHODS

A Simplified, Langendorff-Free Method for Concomitant Isolation of Viable Cardiac Myocytes and Non-Myocytes from the Adult Mouse Heart

Matthew Ackers-Johnson1,2, Peter Yiqing Li1, Andrew P Holmes3, Sian-Marie O’Brien3, Davor Pavlovic3, Roger S. Foo1,2

1Cardiovascular Research Institute, Centre for Translational Medicine MD6, National University Health System, 117599 Singapore; 2Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore, and; 3Institute of Cardiovascular Sciences, University of Birmingham, UK.

Running title: Simplified Isolation of Adult Mouse Cardiac Myocytes

Subject Terms:
Hypertrophy
Remodeling
Animal Models of Human Disease
Basic Science Research
Cell Biology/Structural Biology

Address correspondence to:
Dr. Roger Foo
Cardiovascular Research Institute
Centre for Translational Medicine MD6
National University Health System
117599 Singapore
Tel: +65-6601 1036
Fax: +65-6872 2998
mdcrfsy@nus.edu.sg

In July 2016, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.27 days.
ABSTRACT

Rationale: Cardiovascular disease represents a global pandemic. The advent of and recent advances in mouse genomics, epigenomics and transgenics offer ever greater potential for powerful avenues of research. However, progress is often constrained by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on retrograde aortic perfusion using specialised Langendorff apparatus, which poses considerable logistical and technical barriers to researchers, and demands extensive training investment.

Objective: To identify and optimise a convenient, alternative approach, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment.

Methods and Results: Cardiac myocytes were isolated with yields comparable to those in published Langendorff-based methods, using direct needle perfusion of the LV ex vivo and without requirement for heparin injection. Isolated myocytes can be cultured antibiotic-free, with retained organised contractile and mitochondrial morphology, transcriptional signatures, calcium handling, responses to hypoxia, neurohormonal stimulation and electrical pacing, and are amenable to patch clamp and adenoviral gene transfer techniques. Furthermore, the methodology permits concurrent isolation, separation and co-culture of myocyte and non-myocyte cardiac populations.

Conclusions: We present a novel, simplified method, demonstrating concomitant isolation of viable cardiac myocytes and non-myocytes from the same adult mouse heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology.

Keywords: Cardiac myocyte, cell isolation, cell culture, cardiac fibroblast, Langendorff.

Nonstandard Abbreviations and Acronyms:
BDM 2,3-butanedione monoxime
BSA Bovine serum albumen
CF Cardiac fibroblast
CM Cardiac myocyte
DAPI 4',6-diamidino-2-phenylindole
DMEM Dulbecco’s Modified Eagle Medium
EDTA Ethylenediaminetetraacetic acid
EGTA Ethylene glycol tetraacetic acid
EtH Ethidium homodimer
FBS Foetal bovine serum
HEPES N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid
I\textsubscript{Na} Sodium current
ISO Isoproterenol
LV Left ventricle
M199 Medium 199
NE Norepinephrine
PBS Phosphate buffered saline
(Q)PCR (Real-time, quantitative) polymerase chain reaction
RV Right ventricle
TAC Transverse aortic constriction
TF Tail fibroblast
INTRODUCTION

Cardiovascular disease constitutes a global pandemic1,2. Incidence of heart failure is increasing despite improvement in the understanding and management of disease, and prognosis remains poor3. Cardiac myocytes (CMs), the contractile cells of the heart, are the traditional focus of extensive research in cardiac biology. CMs coordinate rhythmic beating and integrate multiple hormonal, neural, electrical, mechanical and exosome-mediated signals through a variety of cell-surface and nuclear receptors4,5. Physiological adaptive responses may rapidly become pathological. A deeper mechanistic understanding is therefore imperative to the development of novel intervention strategies.

Myocytes in the intact adult myocardium exist in close association with neighbouring cells and extracellular matrix, and are highly sensitive to mechanical perturbations, enzymatic damage, hypoxia, nutrient bioavailability, pH and ionic fluctuations. Mounting of excised hearts on Langendorff apparatus and retrograde aortic perfusion with enzyme-containing buffers was conceived over 45 years ago6,7 and remains the centrepiece of every modern established protocol to date for the isolation and study of adult rodent CMs4,8,9,10,11,12,13,14,15,16,17.

However, the necessity for commercial or custom-made apparatus, and considerable expertise therewith, represents a significant financial, logistical and technical barrier for groups wishing to engage in research using isolated adult CMs. Also, Langendorff-based approaches suffer issues with sterility, and typically require pre-injection of animals with anti-coagulants such as heparin, which is detrimental to downstream polymerase chain reaction (PCR)-based analyses18,19. Furthermore, mouse CMs are exceptionally delicate, and successful mounting of the small mouse aorta onto Langendorff apparatus is particularly challenging. These issues risk precluding the full potential for cardiac research of recent advances in mouse genomics, epigenomics, transgenics and gene therapy20,21,22,23.

We present here a novel alternative approach to the challenge of myocyte isolation and culture from the myocardia of adult mouse hearts. We introduce three key modifications to standard protocols. First, hearts are rapidly perfused with a high-EDTA buffer to inhibit contraction, coagulation, and to destabilise extra-cellular connections. Second, pH of buffers is adjusted to an optimal 7.8. Third, all buffers are introduced by intra-ventricular injection, with deep myocardial perfusion via the coronary vasculature induced by clamping of the aorta (Figure 1). The procedure is simple, flexible, does not require heparin injection, may be performed wholly in a sterile laminar flow cabinet and uses surgical tools and equipment found readily in most animal laboratory facilities.

Reproducible yields are achieved in line with published Langendorff procedures of up to 1 million myocytes per left ventricle and 81±6% viable, calcium-tolerant, rod shaped cells. Isolated CMs can be cultured antibiotic-free, retain organised morphology and functionality, and are amenable to patch clamping and adeno-viral gene transfer. The procedure is compatible with automated pump infusion systems, and furthermore, permits the concurrent isolation, culture and co-culture of mouse non-myocyte resident cardiac populations, from the same regions, in the same heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology.
METHODS

Isolation and culture of cardiac myocytes and non-myocytes from adult mouse heart.
A schematic overview of the myocyte isolation procedure is shown in Figure 2. An expanded description of the procedure, accompanied with images and video, and complete materials list, is available in the Online Data Supplement, alongside full details of additional methods applied in this study (Appendix A-ix). All animal work was undertaken in accordance with Singapore National Advisory Committee for Laboratory Animal Research (NACLAR) guidelines. Relevant national and institutional guidelines and regulations must be consulted before commencement of all animal work.

Buffers and media were prepared as detailed in Appendix D. EDTA, Perfusion, and Collagenase buffers were apportioned into sterile 10 ml syringes, and sterile 27 G hypodermic needles were attached (Online Figure IA).

C57/BL6J mice aged 8-12 weeks were anaesthetised and the chest was opened to expose the heart. Descending aorta was cut and the heart was immediately flushed by injection of 7 ml EDTA buffer into the right ventricle. Ascending aorta was clamped using Reynolds forceps and the heart was transferred to a 60 mm dish containing fresh EDTA buffer. Digestion was achieved by sequential injection of 10 ml EDTA buffer, 3 ml Perfusion buffer and 30-50 ml Collagenase buffer into the left ventricle (LV). Constituent chambers (atria, LV, RV) were then separated and gently pulled into 1 mm pieces using forceps. Cellular dissociation was completed by gentle trituration and enzyme activity was inhibited by addition of 5 ml Stop buffer.

Cell suspension was passed through a 100 μm filter, and cells underwent four sequential rounds of gravity settling, using three intermediate calcium re-introduction buffers to gradually restore calcium concentration to physiological levels. The cell pellet in each round was enriched for myocytes, and ultimately formed a highly pure myocyte fraction, while the supernatant from each round was combined to produce a fraction containing non-myocyte cardiac populations.

Cardiac myocyte yields and % viable rod-shaped cells were quantified using a haemocytometer. Where required, the cardiac myocytes were re-suspended in pre-warmed Plating media and plated at an application-dependent density, onto laminin (5 μg/ml) pre-coated tissue-culture plastic or glass coverslips, in a humidified tissue culture incubator (37°C, 5% CO2). After 1 h, and every 48 h thereafter, media was changed to fresh, pre-warmed Culture media.

The cardiac non-myocyte fraction was centrifuged (300 x g, 5 min), re-suspended in Fibroblast growth media and plated on tissue-culture treated plastic, area ~23 cm² (0.5x 12-well plate) per LV, in a humidified tissue culture incubator. Media was changed after 24 h and every 48 h thereafter.
RESULTS

Langendorff-free isolation of cardiac myocytes from the adult mouse heart.

Cannulation and retrograde perfusion of the aorta, to force dissociation buffers deep into the myocardium via the coronary vasculature, is the cornerstone of all widely adopted protocols for myocyte isolation from the adult mouse heart. We hypothesised that the same hydrodynamic effect could be achieved in a much simplified manner, by clamping the aorta, and injecting buffers directly into the left ventricle (Figure 1). We further supposed that due to the increased ease and speed of this procedure, pre-injection of mice with anti-coagulants such as heparin could be avoided and replaced by pre-clearing of heart chambers using the divalent cation chelating agent EDTA. Thus, the basis of methodology outlined in (Figure 2) was formed.

For each experiment, crude digestion product was monitored, and total cell number and % viable rod-shaped myocytes were subsequently quantified using a haemocytometer (Figure 3A). Following calcium reintroduction, myocytes remained quiescent and adhered to laminin-coated culture surfaces, displaying characteristic angular morphology and clearly organised sarcomeric striation patterns (Figure 3B and 3C). Optimal rod-shaped yields were most reliably achieved at dissociation buffer pH 7.8, and using a high pre-clearing buffer EDTA concentration of 5 mmol/l (Figure 3D, 3E, and Online Figure IIA and IIB). With these conditions, the protocol reproducibly yields up to 1 million myocytes per LV and 81±6% viable, rod shaped cells. This is in line with yields reported previously in established Langendorff-based protocols9,10,12,15. Furthermore, the protocol was found to be compatible with automated infusion pumps for controlled delivery of injected digestion buffers. Flow rates of 1-5 ml/min all produced average yields of over 60% rod shaped cells, demonstrating robustness of methodology, while the highest total cell yields were achieved at 1 ml/min (Online Figure IIC).

Morphology and culture of isolated LV cardiac myocytes.

We next explored the optimal conditions for maintaining viable cardiac myocytes in culture. Several varieties of basal media were initially tested as components of Culture media for their ability to support the preserved morphology of plated LV myocytes over a period of 4 days, and Medium 199 (M199) was selected, in line with some previous reports14 (Online Figure IID). pH is a variable known to critically influence behaviour of myocytes in culture, with some labs opting for neutral or even slightly acidic pH6.9-7.09,10,12. Experiments were therefore performed to test cell morphology and viability in a carefully controlled pH range of 6.7-7.9, as described in Methods (Online Appendix A-ix). Indeed, we observed that myocytes cultured at reduced pH best retained their rod-shaped morphology and were resistant to remodelling even in the presence of 10% FBS (Online Figure IID). However, we also discovered that while rod-shaped morphology is traditionally equated with cell viability, this is not necessarily the case, particularly after extended time in culture. Application of the nuclear ethidium homodimer (EtH) stain, which is excluded from viable cells, to myocytes after 7 days culture at pH 6.7 revealed that large numbers of rod-shaped cells were in fact non-viable (Online Figure IID). This was not the case for myocytes cultured at pH7.4, and furthermore, many of the cells that had not retained their rod-shape at pH7.4, nonetheless remained viable. We therefore highlight an important distinction between remodelling and viability, and suggest that while culturing at reduced pH can suppress myocyte remodelling and retain differentiated morphological characteristics, such conditions are in fact detrimental to cell viability in long-term culture. With this in consideration, we proceeded to separately quantify both rod shaped morphology and viability over 7 days in culture with a pH range of 6.7-7.9. Indeed, while there was little improvement in cell morphology (Figure 3F), there was a marked preservation of cell viability at pH7.4 beyond 3 days in culture (Figure 3G).
Adult myocytes exhibit a metabolic preference for fatty acid oxidation as an energy source. We therefore tested media supplementation with a defined lipid mixture, and observed further improvement in viability to the extent that 60% of initially adhered myocytes remained viable after 7 days in culture (Figure 3H and 3I). Given concerns that lipid and insulin constituents of Culture medium could interfere with metabolic assays, it is noteworthy that cell viability without either of these additives remained above 40% (Online Figure II). Interestingly, insulin supplementation demonstrated clear improvements in viability only in lower pH range cultures. However, inclusion may still elicit functional benefits at pH 7.4. Media supplementation with 5 mmol/l taurine, creatine, adenosine and inosine were additionally tested but had little beneficial effect (data not shown).

Progressive, active remodelling of adult cardiac myocytes in culture is well-documented. Concordantly, the angular morphology and ordered sarcomeric arrangements of plated myocytes remained largely intact after 24 h culture (Figure 3J and Online Video III), but cell edges began to round after 2-3 days, and organised sarcomeric patterning was typically lost by day 7. Continued culture produced cells with distinctive emerging pseudopodia, and beyond 8 days, some cells appeared to re-establish organised contractile apparatus, beat spontaneously, or form contacts with neighbouring cells and contract in synchrony. This phenomenon was accelerated by addition of 10% FBS and removal of 2,3-butanedione monoxime (BDM), and bears resemblance to dated “re-differentiation” techniques.

Cultured myocytes are intact, retain transcriptional and functional characteristics and are amenable to investigative techniques.

The process of isolating adult cardiac myocytes carries an inherent risk of causing cellular damage, or activation of stress response pathways that could potentially confound in vivo or downstream transcriptional profiles. To test the integrity of the plasma membranes of freshly plated myocytes, a “live/dead” dual viability stain was employed. Myocytes were clearly able to de-esterify and retain calcein AM (green) fluorescent dye, while excluding EtH (red) nuclear stain, demonstrating intact, viable cells (Figure 4A). Peroxide-induced cell death led to loss of calcein retention, and gain of EtH staining. Pressure overload of adult hearts induces myocyte hypertrophy, which is associated with increased expression of markers including natriuretic peptides ANP (Nppa), BNP (Nppb), and the skeletal isoform of alpha-actin (Acta1). To examine the conservation of these stress-associated transcriptional signatures, myocytes were isolated from transverse aortic constriction (TAC)-operated mouse hearts, 8 weeks post-operation, alongside sham-operated controls. Yields of viable rod-shaped myocytes dropped to 65±15% from TAC-operated hearts (data not shown), likely due to the pathological hypertrophic phenotype, although this is still well within the limits of successful myocyte isolations in established protocols. Despite this, QPCR analysis of myocytes isolated from both left and right ventricles revealed the preservation of increased transcriptional stress signatures in TAC-operated hearts, versus sham-operated controls (Figure 4B).

Transcriptional stress response, calcium handling, contractility, electrical potential and amenability to adenoviral transduction were next tested in freshly plated cells from healthy hearts to confirm applicability of isolated myocytes to scientific investigation. Hypoxic stress was induced by 24 h incubation in a chamber under a controlled nitrogen atmosphere containing 5% CO₂ and 0.2% O₂. Cells were then analysed for expression of hypoxia-responsive genes. Significant increases in expression Nppa, Nppb, foetal isoform myosin heavy chain (Myh7), glucose transporter (Slc2a1) and metabolism-related hexokinase (Hk2) genes, but not mitochondrial biogenesis related MAX interactor 1 (Mxi1), were strongly upregulated following hypoxic exposure (Figure 4C).

To demonstrate the suitability of preparations for biochemical signalling experiments, plated myocytes were challenged with varying doses of adrenergic activators norepinephrine (NE) and isoproterenol (ISO). Lysates were subsequently analysed by Western blotting with specific antibodies to
detect phosphorylation of protein kinase B (AKT), phospholamban (PL) and extracellular signal-related kinase (ERK). Both stimuli elicited dose-dependent increases in AKT and PL phosphorylation (Figure 4D). AKT phosphorylation was also observed to increase with increased NE incubation time up to 20 min, while PL phosphorylation saturated within 1 min, and ERK exhibited somewhat fluctuating increases in phosphorylation over time (Online Figure III).

Following removal of BDM from Culture medium, plated myocytes exhibited spontaneous calcium transients, which could be visualised using the calcium-sensitive fluorophore Fluo-4 AM. Signals typically emanated from one or less frequently both termini, and moved steadily across the cell longitudinal axis, coinciding with waves of partial contraction (Online Figure IVA and Online Video IVA and IVB). Addition of NE elicited increased rates of spontaneous calcium transient initiation, propagation and cell contraction in individual cells, further indicating intact adrenergic signalling and response mechanisms in plated cells36 (Online Figure IVB).

Additional experiments were performed to quantify calcium handling properties and adrenergic responses in freshly isolated myocytes. Electrically paced cells exhibited characteristic frequency-dependent changes in calcium handling (Online Figure VA) and sarcomere shortening (Online Figure VB), including reduced sarcomere shortening at higher pacing frequency, as expected. Importantly, myocytes responded to adrenergic stimulation in a dose dependent manner, in accordance with previous studies. Administration of ISO amplified both calcium transients and sarcomere length shortening (Figure 4E). Specifically, increasing doses of ISO stimulated increased calcium transient amplitude (Figure 4F) decreased calcium decay constant (τ) (Figure 4G) and increased sarcomere length shortening (Figure 4H). Representative individual pre- and post- ISO calcium transient and sarcomere length traces are shown in Online Figure VC and VD. A normalised calcium transient trace is shown to highlight the reduced transient decay time in the presence of ISO.

To confirm the amenability of isolated cardiac myocytes to patch clamp studies, sodium current (I_{Na}) was quantified in freshly isolated myocytes. Measurements of whole cell I_{Na} from single myocytes under voltage clamp mode could be readily evoked in all cells tested, with the peak I_{Na} current density measuring -36±3 pA/pF at a test potential of -40 mV. I_{Na} displayed robust voltage dependence with a mean $V_{0.5}$ of -52±1 mV and reverse potential of 8±2 mV (Figure 5A and 5B). These values are consistent with previous reports of rodent ventricular I_{Na} measured under similar conditions. The steady state inactivation (availability) of I_{Na} exhibited voltage dependency with a mean $V_{0.5}$ of -86±1 mV (Figure 5C and 5D), again in keeping with previously recorded data. Thus, the magnitude of I_{Na} and the activation and inactivation kinetics of I_{Na} are measurably preserved using this isolation technique.

Healthy adult cardiac myocytes contain dense, highly organised networks of mitochondria running parallel to sarcomeres in the cell longitudinal axis, which have key roles in cell bioenergetics, and in injury or disease. To visualise active mitochondria in cultured myocytes, cells were loaded with membrane-potential-dependant MitoTracker Red CMXRos dye, and analysed by confocal microscopy. The characteristic mitochondrial network patterning of healthy myocytes was confirmed in our cells (Online Figure VI).

Experiments using cultured cells often require the manipulation of endogenous or exogenous nucleic acids. Adenoviral vectors are an effective tool for introduction of expression constructs into cardiac myocytes. To test myocyte transduction capability in the current procedure, cells were treated with adenoviral expression constructs encoding the myogenic transcriptional coactivator myocardin (Ad5.Myocd), dominant-negative Myocd-DN (Ad5.Myocd-DN), or GFP control (Ad5.GFP). Myocd-DN encodes a truncated form of myocardin that competes with endogenous myocardin for binding at target gene promoters, but lacks a C-terminal transcription activating domain. Subsequent analysis of gene expression demonstrated that Ad5.Myocd treatment caused significant 4-fold and 2-fold upregulation of
myocardin target genes *Nppa* and *Nppb* respectively, whereas expression was strongly suppressed by treatment with Ad5.Myocd-DN. Phenylephrine treatment further increased *Nppa* although not *Nppb* expression in control and Ad5.Myocd-treated myocytes, but this increase was abrogated in Ad5.Myocd-DN-treated myocytes (Online Figure VII). Thus, the current protocol is well-suited for studies involving adenoviral-mediated gene transfer, expression and responses in cultured adult mouse cardiac myocytes.

Concurrent isolation and culture of cardiac myocytes and fibroblasts from a single mouse heart.

The mammalian adult heart contains substantial populations of non-myocyte cells, with emerging roles in cardiac physiology, pathology and regenerative capacity. Cardiac fibroblasts (CF) represent a sizeable albeit ill-defined population, with critical functions during health and disease. There are currently no peer-reviewed published protocols describing the concomitant isolation, culture and study of myocytes and fibroblasts from the same adult mouse heart.

Traditional protocols for CF culture involve a simple enzymatic digestion of the heart, centrifugation of crude product and plating in serum-containing media. We set out to test whether CFs could be cultured in a similar manner from the current non-myocyte supernatant fractions of LV digestion products. For comparison, fibroblasts were isolated from mouse tails (TF) in parallel.

Cells were observed to attach and proliferate to near confluency within 4-5 days, and were confirmed positive for the fibroblast marker vimentin (VIM) by immunocytochemical staining. The absence of adhered CMs was confirmed by negative TNNT staining, and conversely, absence of contaminating fibroblasts in plated CM samples was confirmed by negative VIM staining, indicating complete separation of the two cellular fractions (Figure 6A).

Cultured cardiac fibroblasts recapitulate characteristics of cardiac fibroblasts from traditional protocols.

Cultured CFs displayed extensive morphological differences when compared to TFs, with increased cell spreading, cytoplasmic protrusions and a distinctive asymmetrical “looping” shape that were particularly pronounced at sub-confluent cell densities (Online Figure VIII A). It has been reported that CFs express a cardiogenic transcriptional network. Accordingly, freshly cultured CMs, TFs, and CFs (p0), and CFs after 1 (p1) and 2 (p2) passages, were harvested for analysis of gene expression. QPCR data is summarised graphically as a heat-map in Figure 6B. Expression of three selected canonical fibroblast and cardiogenic genes are also represented in standard format (Online Figure VIIIB-VIIIG). Detection of CM-associated genes was largely limited to myocytes. Freshly isolated CFs tended to express lower levels of canonical fibroblast marks than TFs, other than collagen synthesis genes *Col1a1* and *Col1a2*. Conversely, CFs showed markedly higher expression of cardiogenic-associated genes than TFs, often higher also than CMs. These results are consistent with previous findings, and pave the way for easily achievable co-culture experiments to study cell-cell interactions in vitro (Figure 6C). Furthermore, the cultured CFs were able to activate a transition to myofibroblasts, marked by increased production of smooth muscle alpha actin (ACTA2) in response to transforming growth factor beta (Tgfb) stimulation (Figure 6D), and this potential was retained for at least two passages (Figure 6E). Therefore, evidence supports the utility of the current protocol for the isolation, culture and study of cardiac fibroblasts, in addition to cardiac myocytes.

Isolated cardiac non-myocytes represent a heterogeneous population.

While cultured CF reliably recapitulated characteristic observations from previous studies, close visual inspection revealed areas within cultures displaying unique morphological features (Online Figure IX A), sometimes resembling endothelial networks (Online Figure IX B). Analysis of the non-myocyte-containing fraction by flow cytometry using specific antibodies confirmed the presence of smooth muscle...
cells (ACTA2+), fibroblasts (THY1+), endothelial cells (CD146+, or positive for *Griffonia simplicifolia* isolectin-B4 staining), and immune-related cells (CD45+) (Figure 7A, and Online Figure IX C).

Plated cultures were tested for the presence of endothelial cells by immunocytochemical staining against CD31. In sub-confluent cultures, positive staining was detected, but limited to small, infrequent clusters (Figure 7B). However, in post-confluent cultures, CD31-positive cells marked the distinctive networks observed previously, which stained strongly for actin and negative for the fibroblast marker vimentin, leading to their positive identification as endothelial cell networks (Figure 7C and 7D). Although rarely discussed in literature, it seems likely that cardiac fibroblasts obtained by traditional methods would comprise a similarly heterogeneous population, which may have passed undetected, particularly when limiting studies to sub-confluent cultures. However, the identification of such cells raises the tantalising prospect for utilisation of the current protocol in simplified concurrent isolation of not only myocytes and fibroblasts, but also endothelial cells, and the potential array of diverse cardiac-resident non-myocyte populations that continue to be investigated and discovered.

DISCUSSION

Isolated adult CMs have proven an ideal model for valuable insights into diverse aspects of cardiac physiology and pathobiology, from contractility, calcium handling and electrophysiology, to signalling, bioenergetics, drug testing, single cell transcriptomics and apoptosis. However, progress using current protocols is often constrained by technical and logistical difficulties associated with the Langendorff-based isolation and maintenance of high yields of viable adult CMs. In this report, we present a novel, convenient approach to isolate viable, calcium-tolerant myocytes from the adult mouse heart, using only standard surgical tools and equipment, and without the prerequisite of heparinisation. Yields of total and viable myocytes are consistent with and sometimes exceed those reported in previous Langendorff-based procedures. Furthermore, we demonstrate the concomitant isolation and culture of myocytes and non-myocytes from the same mouse heart.

The described protocol builds upon decades of international research, with buffer recipes and culture techniques adapted from work in a number of excellent papers and reviews. We introduce three key modifications to standard protocols: pre-perfusion with high-EDTA buffer, pH correction, and most notably, simple intra-ventricular injection of all dissociation buffers.

The divalent cation-chelator EDTA was first tested as a substitute for heparinisation, amid some concern that EDTA may be damaging to myocytes. However, a common theme of adult CM isolation procedures is the importance of initial perfusion using calcium-free buffers, with some reports indeed utilising low micro-molar concentrations of EDTA, or the higher-calcium-affinity analogue ethylene glycol tetraacetic acid (EGTA). It appears that initial chelation of divalent cations using EDTA may impart multiple benefits, including the inhibition of blood coagulation, inhibition of CM cell contractions, and loosening of intercellular connections.

Previous CM isolation methods adopt a physiological pH of between 7.0-7.4 for dissociation buffers, generally without presenting supporting evidence. It is unclear why a pH of 7.8 appears optimal for the current protocol. Possibly, higher pH off-sets acidification in cases of myocardial lactate production, increases EDTA affinity for divalent cations, or, interestingly, improves glucose utilisation via increased phosphofructokinase activity, which functions at an optimum pH of 8.0.

Introduction of dissociation buffers by intra-ventricular injection negates the requirement for Langendorff perfusion apparatus, simplifies, and easily facilitates the option for conducting the entire
procedure in a sterile laminar flow cabinet. The heart is perfused immediately at euthanasia, and precise identification of the mouse aorta is not necessary for clamp application, substantially reducing the potential for errors, blood coagulation, ischaemia and incorrect mounting of the heart, encountered when using traditional retrograde perfusion techniques. Some previous protocols emphasise the critical importance of maintaining the perfused heart at 37°C. Digestion is certainly faster at 37°C, but we do not find temperature to be a key variable affecting the number or viability of isolated myocytes, and have successfully conducted isolation procedures at room temperature. The protocol is compatible with automated pump injection systems, for precise control of buffer pressure or flow rates. However, standard injection using disposable syringes is sufficient, and may help ensure sterility and a higher degree of control over perfusion for individual hearts, given that marked biological variability occurs between mice even within littermate groups. Sterile procedure and antibiotic-free culture may be particularly useful for studies involving CM calcium handling or electrophysiology, given the influence of streptomycin and analogues on certain ion channel functions.

Cultured myocytes retained characteristic morphology, transcriptional signatures and functionality, with organised sarcomeric contractile apparatus and mitochondrial networks, calcium handling, responses to neurohormonal, electrical and hypoxic stimuli, and amenability to patch clamping and adenoviral-mediated gene transfer. Progressive remodelling was observed with extended periods in culture, as noted in previous reports. Various strategies to prevent or decelerate this process have been proposed, including addition of the bioactive molecules N-benzyl-p-toluene sulphonamide (BTS), blebbistatin or cytochalasin D. BTS and blebbistatin are also suggested as specific myosin II ATPase inhibitors during myocyte culture to replace BDM, which has received some criticism for off-target bioenergetic, phosphatase and calcium regulatory effects. Although not tested here, such compounds may easily be incorporated into the current protocol for application-specific purposes.

Non-myocyte cardiac populations are rapidly gaining recognition as key participants in heart biology and pathophysiology. Cardiac fibroblasts were successfully cultured from the non-myocyte fraction of ventricular digestion product and closely recapitulated previously reported morphology and cardiogenic-like transcriptional profiles. The presence of endothelial populations was also detected in cultures. It is unclear whether such populations exist in the fibroblast cultures of other reports. It is also likely possible, and through personal communication a practice in some labs, to equally isolate non-myocytes in the same manner from adult mouse heart digestion products after Langendorff-based protocols, although this is not to our knowledge published in any peer-reviewed literature. In either case, the current report raises the exciting prospect of simplified, simultaneous isolation and profiling of a range of non-myocyte populations, alongside viable cardiac myocytes, from the same regions, in the same mouse heart. Taken together, the described method offers a novel, convenient approach to the isolation and study of mouse cardiac myocytes, removing technical and logistical obstacles posed by previous Langendorff-based techniques and opening the door to new, critical and exciting research into both myocyte and non-myocyte populations in the adult mouse heart.
ACKNOWLEDGEMENTS
The authors would like to thank Ning Ding and the SBIC-Nikon Imaging Centre, Biopolis, Singapore, for kind assistance with confocal microscopy. Also to Dr Tuan Luu for performing TAC surgery, Dr Justus Stenzig for assistance with flow cytometry, Dr Chukwuemeka George Anene-Nzelu for assistance with capturing of spontaneous calcium transient data, and Prof Paulus Kirchhof and Dr Larissa Fabritz for provision of staff and equipment for patch clamping studies.

SOURCES OF FUNDING
This work was funded by CSA (SI), Cardiovascular Centre Grant NUH and CS-IRG from the National Medical Research Council and the Biomedical Research Council, A*STaR, Singapore, to RF, Wellcome Trust Seed Award Grant (109604/Z/15/Z) to DP, British Heart Foundation Grant (FS/13/43/30324) to PK and LF and Leducq Foundation Grant to PK.

DISCLOSURES
None.

REFERENCES

DOI: 10.1161/CIRCRESAHA.116.309202 11

DOI: 10.1161/CIRCRESAHA.116.309202

46. Howard CM, Baudino TA. Dynamic cell-cell and cell-ECM interactions in the heart. *J Mol Cell Cardiol* 2014; 70:19-26. PMID:24140801

DOI: 10.1161/CIRCRESAHA.116.309202
FIGURE LEGENDS

Figure 1. A new method to isolate cardiac myocytes from the adult mouse heart. Schematic diagrams illustrating the principle of the approach, in which traditional Langendorff-based retrograde aortic perfusion is replaced by simple injection of dissociation buffers into the left ventricle (**A**). Application of a haemostatic aortic clamp forces passage of buffers (blue arrows; **B**) through the coronary circulation (red), ensuring deep perfusion of the myocardium.

Figure 2. Summary of the cardiac myocyte isolation protocol. A detailed, extended description of methodology, with images and video, is available in the Online Data Supplement.

Figure 3. Protocol optimisation and isolation of high yields of viable cardiac myocytes. **A-C,** Representative images of adult mouse left ventricular digestion products, before plating (**A**), and after 1 h culture (**B** and **C**), showing yields of 80% rod-shaped, viable myocytes, with organised sarcomeric striations. Scale bars are 100 μm. **D,** Optimisation of dissociation buffer pH. Highest viable yields were obtained at pH 7.8. EDTA concentration was 1 mmol/l. **E,** Optimisation of EDTA concentration. Highest yields were obtained at 5 mmol/l EDTA. Buffer pH was 7.8. Data show mean ± standard deviation (s.d), n=3 independent experiments. **F-I,** Quantification of myocyte rod-shape morphology (**F** and **H**) and viability (exclusion of ethidium homodimer stain, **G** and **I**) over a timecourse of 7 days in culture at specified pH range (**F** and **G**) and with or without lipid supplementation at optimal pH 7.4 (**H** and **I**), as indicated. Data show mean ± s.d, n=2 independent experiments in biological triplicate. **J,** Immunological staining and confocal imaging of myocytes with sarcomeric-alpha-actinin antibody (ACTN2; green) and DAPI, after increasing time in culture, as indicated. Loss of sarcomeric organisation was observed after 8 days culture. 10% FBS was included in cultures from day 8 onwards, and BDM removed. Extended culture resulted in re-establishment of sarcomeric structures, formation of cell-cell contacts and synchronised, spontaneous contractility. Scale bars are 50 μm.

Figure 4. Cultured cardiac myocytes retain transcriptional and functional characteristics, and are amenable to investigation. **A,** Isolated myocytes are viable with intact plasma membranes. Freshly plated myocytes retain calcein (green) but exclude ethidium (EtH, red). Addition of 10 μmol/l butyl-peroxide (TBH) led to calcein escape and entry of EtH. Nuclear counterstain, Hoechst-33342. Scale bars are 100 μm. **B,** Myocytes from both ventricles retain characteristic transcriptional signatures after isolation from a pressure-overload model of hypertrophy (TAC), compared to sham-operated controls. Expression was quantified by QPCR, relative to 18S. Data show mean ± s.d, n=3 mice per group. *P<0.05, **P<0.01, Student’s t-test. **C,** Hypoxia-regulated genes Nppa, Nppb, Myh7, Slc2a1 and Hk2, but not Mx1, were significantly upregulated in cultured myocytes after 24 h hypoxic exposure. Data show mean ± s.d, n=3 independent experiments, expression relative to 18S. **P<0.01, ***P<0.001, Student’s t-test. **CD-H,** Myocytes are responsive to adrenergic stimulation in a dose-dependent manner. **D,** Western blot to demonstrate phosphorylation of AKT and phospholamban (PL), 20 min after addition of norepinephrine (NE) or isoproterenol (ISO), as indicated. **E-H,** Myocytes were loaded with fura2-AM and paced at 2 Hz in the presence of ISO as indicated. Calcium transients and sarcomere length shortening were measured using the integrated photometry/contractility system (Ionoptix). **E,** Representative raw traces of calcium transients (upper panel) and sarcomere length (lower panel) recorded from a single cell, ISO added as indicated. Calcium transient amplitude (**F**), calcium transient decay (**G**), and % sarcomere length (**H**) shortening were subsequently quantified in response to ISO addition as indicated. Data show mean ± standard error, n≥9 cells from 3 hearts, *P<0.05, one way ANOVA followed by Dunnett’s multiple comparisons test.

Figure 5. Isolated myocytes display normal sodium currents (I_{Na}). I_{Na} were measured in freshly isolated left ventricular cardiac myocytes. **A,** Representative voltage-dependent I_{Na} raw traces recorded
from a single ventricular cardiac myocyte. The voltage protocol is shown in the inset. **B**, Mean data for current-voltage relationship of I_{Na} current density (pA/pF; n=8 cells from 3 hearts). **C**, Representative raw traces showing voltage-dependent steady-state I_{Na} inactivation. The voltage protocol is shown in the inset. **D**, Mean data for I_{Na} inactivation curve (n=8 cells from 3 hearts).

Figure 6. Concomitant culture and study of cardiac myocytes and fibroblasts from the same mouse heart. **A**, Immunological staining of isolated cardiac myocytes (CM) and cardiac fibroblasts (CF) with cardiac troponin-T antibody (TNNT2, red), vimentin antibody (VIM, green), and DAPI, after 3 days culture. Specific staining demonstrates strong separation of myocyte and non-myocyte fractions. **B**, Transcriptional analysis of cultured CM, tail fibroblasts (TF) and CF after 3 days culture, and CF after one (p1) or two (p2) passages in culture. Expression of selected cardiac myocyte-related (CM), canonical fibroblast-related and cardiogenic-related genes was determined by QPCR, relative to 18S, and presented in heat-map format. Data represent mean expression, n=2 independent experiments in biological triplicate. **C**, Co-culture of cardiac myocytes and fibroblasts from the same mouse heart. Cell fractions were isolated, recombined after 3 days separate culture, and maintained for 4 further days in the presence of 10% FBS. Cells were fixed and co-stained with antibodies against sarcomeric-alpha-actinin (ACTN2, green, CM) and vimentin (VIM, red, CF), and DAPI. **D**, Activation of isolated CFs following 24 h incubation with 10 ng/ml transforming growth factor beta (Tgfb) was detected by immunological staining for smooth muscle alpha-actin (ACTA2) production. **E**, The potential for activation of isolated CFs with Tgfb persisted for at least two passages. Data show mean ± s.d, n=2 independent experiments in biological triplicate, $Acta2$ expression relative to 18S. **P<0.01, ***P<0.001, Student’s t-test, compared to relevant unstimulated controls.

Figure 7. Isolated cardiac non-myocytes represent a heterogeneous population. **A**, Relative proportions of non-myocyte-fraction cells detected positive for putative identity markers: ACTA2 (smooth muscle), THY1 (cardiac fibroblast), CD146 and GSL-Isolectin-B4 (endothelial), CD45 (immunocyte), by flow cytometry. Data averaged from 3 independent experiments. **B**, Immunological staining of CD31 (PECAM-1) in sub-confluent non-myocyte fraction cultures marked clusters of endothelial-like cells (green). **C-D**, In post-confluent cultures, these cells were observed to form CD31-positive (green), actin-rich (stained using fluorophore-conjugated phalloidin; red) networks (C), that stained negative for the fibroblast marker vimentin (VIM; green; D). All scale bars are 100 μm.
Novelty and Significance

What Is Known?

- Isolation of healthy, intact cardiac myocytes from the mouse heart is challenging and a barrier to progress in cardiac research.
- Current established protocols rely on the use of Langendorff apparatus, which requires considerable technical expertise.

What New Information Does This Article Contribute?

- We describe a convenient, alternative approach, using direct needle perfusion of the LV ex vivo, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment.
- Myocytes are isolated with yields, viability and functionality comparable to those in published Langendorff-based methods.
- The technique also permits concurrent isolation, separation and co-culture of non-myocyte cardiac cell populations.

Progress in cardiac research is hampered by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on reverse aortic perfusion using specialised Langendorff apparatus, which poses considerable logistical and technical barriers to researchers, and demands extensive training. We therefore sought to validate an alternative, simplified approach. Our protocol achieves yields of myocytes comparable to those in published Langendorff-based methods, by direct needle perfusion of the LV ex vivo, using only common surgical and laboratory equipment. Isolated myocytes are viable, functional, and amenable to a full range of investigative techniques. Furthermore, the methodology permits concurrent isolation, separation and co-culture of myocyte and non-myocyte cardiac populations, including fibroblasts and endothelial cells. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology.
Chest cavity of anaesthetised mouse is opened to below diaphragm (red) to fully expose heart.
1. Descending aorta and inferior vena cava are cut.
2. 7 ml EDTA buffer is injected into apex of right ventricle.
3. Lahey forceps reach behind heart to clamp aorta.
4. Heart is removed by cutting behind clamp.

Clamped heart is submerged in 60 mm dish of EDTA buffer. 10 ml EDTA buffer is injected into apex of left ventricle (LV).

Heart is transferred to dish of perfusion buffer. 3 ml perfusion buffer is injected into apex of LV.

Heart is transferred to dish of collagenase buffer. 30-40 ml collagenase buffer injected into apex of LV, until digestion is apparent.

Clamp is removed. Heart may be separated into respective chambers as desired. Tissue is then pulled gently into ~1mm³ pieces using forceps, and dissociated by gentle pipetting.

Stop buffer is added. Cell suspension is passed through 100 μm strainer and myocytes gravity settle for 20 min.

Supernatant containing non-myocyte cells, debris and extracellular matrix is collected. Myocytes then undergo two further rounds of gravity settling to achieve a pure population that may be harvested, applied in acute studies, or plated for in vitro culture.

Similarly, supernatant fractions are combined and centrifuged to isolate non-myocyte populations.
<table>
<thead>
<tr>
<th>Cell Mark</th>
<th>% Positive count</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTA2</td>
<td>7.5</td>
<td>+/- 3.5%</td>
</tr>
<tr>
<td>THY1</td>
<td>20.7</td>
<td>+/- 3.8%</td>
</tr>
<tr>
<td>Isolectin B4</td>
<td>21.0</td>
<td>+/- 4.7%</td>
</tr>
<tr>
<td>CD146</td>
<td>21.4</td>
<td>+/- 1.9%</td>
</tr>
<tr>
<td>CD45</td>
<td>26.8</td>
<td>+/- 7.9%</td>
</tr>
</tbody>
</table>