Expert Consensus Document

Gregory J. Dehmer,1* MD; James C. Blankenship,2 MD; Mehmet Cilingiroglu,3 MD; James G. Dwyer,4 MD; Dmitriy N. Feldman,5 MD; Timothy J. Gardner,6 MD; Cindy L. Grines,7 MD; and Mandeep Singh,8 MD, MPH

1 Baylor Scott & White Health, Central Texas, Temple, TX. SCAI Writing Committee Member and Chair
2 Geisinger Health System, Danville, PA. SCAI Writing Committee Member
3 Arkansas Heart Hospital, Little Rock, AR. SCAI Writing Committee Member
4 Heart and Vascular Center of Northern Arizona, Flagstaff, AZ. SCAI Writing Committee Member.
5 New York Presbyterian Hospital, New York, NY. SCAI Writing Committee Member
6 Christiana Care Health System, Newark, DE. AHA Writing Committee Member
7 Detroit Medical Center, Detroit, MI. SCAI Writing Committee Member
8 Mayo Clinic, Rochester, MN. ACC Writing Committee Member

*Correspondence to: Gregory J. Dehmer, Cardiology Division [MS 33 ST156], Baylor Scott & White Health, Central Texas, 2401 South 31st Street, Temple, TX 76513. E-mail: gdehmer@sw.org.

Authors’ relationships with industry are available in Appendix 1. Peer reviewers’ relationships with industry are available in Appendix 2.

This article is copublished with Catheterization and Cardiovascular Interventions and the Journal of the American College of Cardiology.

Received 27 November 2013; Revision accepted 21 December 2013.

Copies: This document is available on the World Wide Web sites of the Society for Cardiovascular Angiography and Interventions (www.scai.org), the American College of Cardiology (www.cardiosource.org), and the American Heart Association (my.americanheart.org). A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

(Circulation. 2014;129:000–000.)

© 2014 by the Society for Cardiovascular Angiography and Interventions, the American College of Cardiology Foundation, and the American Heart Association, Inc.

DOI: 10.1161/CIR.0000000000000037

Key words: AHA Scientific Statements; angioplasty; coronary artery bypass surgery; consensus.
INTRODUCTION

In 2007, the Society for Cardiovascular Angiography and Interventions (SCAI) published an Expert Consensus Document titled “The Current Status and Future Direction of Percutaneous Coronary Intervention without On-Site Surgical Backup” [1]. This document summarized the available data on the performance of percutaneous coronary intervention (PCI) without on-site surgery in the United States (US), reviewed the existing literature, examined the recommendations for the performance of PCI in this setting from several professional organizations abroad and from experienced programs in the US, defined the best practices for facilities engaged in PCI without on-site surgery and made recommendations for the future role of PCI without on-site surgery.

Since publication of that document, new studies, meta-analyses, and randomized trials have been published comparing PCI with and without on-site surgery. In addition, the total number of PCIs performed annually has decreased, reports about the overuse of PCI have emerged, and appropriate use criteria for coronary revascularization have been published. A noteworthy change occurred in the 2011 PCI guideline in which elective PCI was upgraded to Class IIb and primary PCI was upgraded to Class IIa at facilities without on-site surgery [2]. Several tables on the structure and operation of programs without on-site surgery from the 2007 SCAI Expert Consensus Document were used in the 2011 PCI guideline recommendations. Finally, new updates of the ACCF/SCAI Expert Consensus Document on Cardiac Catheterization Laboratory Standards and the ACCF/AHA/SCAI Clinical Competence in Coronary Artery Interventional Procedures have been published [3,4].

Although many of the concerns about the safety of PCI without on-site surgery have been resolved, there are new issues to consider as the delivery of PCI continues to evolve in the US. Accordingly, the SCAI, ACCF, and AHA have engaged in this effort to reevaluate
the current status of PCI without on-site surgery in the US. The specific goals of this effort were to:

1. Determine current trends in the prevalence of PCI without on-site surgery in the US;
2. Summarize new literature related to the performance of PCI without on-site surgery;
3. Review existing guidelines, expert consensus documents, competency statements and other documents related to PCI without on-site surgery and summarize all relevant information into a single resource document;
4. Outline the current best practice methods and requirements for facilities engaged in performing PCI without on-site surgery; and
5. Evaluate the role of PCI without on-site surgery within the current US healthcare system.

Trends in the Performance of PCI

Although the use of PCI in the US had grown considerably since the early 1980s, data from the Nationwide Inpatient Sample cited by the Agency for Healthcare Research and Quality shows that the annual volume of PCI procedures peaked in 2006 and has since declined by over 30% [5]. Numerous factors have contributed to this decline, including a reduction in restenosis by drug-eluting stents, a greater emphasis on medical therapy for the treatment of stable coronary artery disease, enhanced primary and secondary prevention efforts, a reduction in the incidence of ST-segment elevation myocardial infarction (STEMI), the increasing use of techniques such as fractional flow reserve to better evaluate lesion severity and the development and application of appropriate use criteria [5,6]. As a result of these factors, many operators and hospitals now have low-volume practices. Using data from 2008, Maroney et al. estimated that 61% of interventional cardiologists performed 40 or fewer Medicare fee-for-service PCIs annually [7]. Clinical data from 1298 facilities reporting to the National Cardiovascular Data Registry (NCDR) show that 49% of facilities performed ≤400 PCIs and 26% performed ≤200 PCIs annually (Fig. 1) [8]. Approximately 33% of facilities
had no on-site surgery, and among these, 65% (282 facilities) had an annual case volume of
\[\leq 200\] PCI procedures.

Across the US, PCI without on-site surgery has increased since 2007. The writing
commitee assessed the current use of PCI without on-site surgery from a survey of ACC
Governors for each state, data from industry sources and direct contact with physicians in
various states (Fig. 2). Currently, 45 states allow both primary and elective PCI without on-
site surgery, 4 states allow only primary PCI without on-site surgery, and 1 state prohibits
PCI without on-site surgery. PCI without on-site surgery is regulated by the State Department
of Health in 34 states but is unregulated in the remaining 16 states. Elective PCI without on-
site surgery was allowed at selected facilities in 9 states but only as part of statewide
demonstration projects or to allow participation in the Cardiovascular Patient Outcomes
Research Team (CPORT) Nonprimary PCI (CPORT-E) trial [9]. Since the conclusion of
CPORT-E, the use of PCI without on-site surgery is being reevaluated in several of these
states. PCI without on-site surgery is currently performed in 19 of the 65 cardiac
catheterization laboratories within the Veterans Health Administration [10].

Recent Literature on PCI Without On-site Surgery

Since 2006, 11 original studies and 3 meta-analyses on the topic of PCI without on-site
surgery have been identified by a computerized systematic literature search using Medline
(PubMed and Ovid) and Cochrane Databases [9,11–23].

Primary PCI without on-site surgery. Seven studies and 2 meta-analyses of primary PCI
showed no difference for in-hospital or 30-day mortality between sites with and without on-
site surgery (Table 1). None of the individual studies examining the occurrence of emergency
CABG surgery after primary PCI showed a difference between sites with and without on-site
surgery. However, 1 meta-analysis showed that sites without on-site surgery had a lower
occurrence of emergency CABG surgery after primary PCI (odds ratio, 0.53; 95% confidence interval 0.35–0.79) [20].

PCI without on-site surgery for conditions other than STEMI. Eight studies examined nonprimary PCI at sites with and without on-site surgery (Table 2). The majority of studies and meta-analyses showed no difference in mortality or a need for emergency CABG at sites without on-site surgery. One study at a high-volume facility performing only elective PCIs and staffed by high-volume interventionalists showed a lower mortality at the facility without on-site surgery (OR, 0.11; 95% CI 0.01–0.79) [21]. However, the baseline clinical and angiographic characteristics of the study groups with and without on-site surgery were sufficiently different that a meaningful adjusted analysis could not be performed, and there is therefore the possibility of a case selection bias.

Two randomized trials of nonprimary PCI have now been published. The CPORT-E trial randomized over 18,000 patients in a 1 : 3 ratio to undergo PCI at hospitals with and without on-site cardiac surgery, respectively [9]. High-risk patients were excluded, as was the use of atherectomy devices. The trial had 2 primary endpoints: 6-week mortality and 9-month incidence of major adverse cardiac events (composite of death, Q-wave myocardial infarction, or target-vessel revascularization). The 6-week mortality rate was 0.9% at hospitals without on-site surgery compared with 1.0% at those with on-site surgery ($P = 0.004$ for noninferiority). The 9-month rates of major adverse cardiac events were 11.2% and 12.1% at hospitals with and without on-site surgery, respectively ($P = 0.05$ for noninferiority). A similar, but smaller randomized study of nonemergency PCI was performed in Massachusetts hospitals [11]. The rates of major adverse cardiac events were 9.5% in hospitals without on-site cardiac surgery and 9.4% in hospitals with on-site cardiac surgery at 30 days (relative risk, 1.00; 95% one-sided upper confidence limit, 1.22; $P < 0.001$ for noninferiority) and 17.3% and 17.8%, respectively, at 12 months (relative risk, 0.98; 95% one-sided upper confidence limit, 1.13; $P < 0.001$ for noninferiority). The individual rates of
death, myocardial infarction, repeat revascularization and stroke did not differ significantly between the groups at either time point.

Three meta-analyses conducted primarily with registry data have examined the use of nonprimary PCI at facilities with and without on-site surgery [19,20,23]. Overall, the mortality rate and need for emergency CABG surgery did not differ between hospitals with and without on-site surgery. In 1 meta-analysis, after adjusting for publication bias, the mortality rate for nonprimary PCI was 25% higher at centers without on-site surgery compared with centers that had on-site surgery (OR, 1.25; 95% CI, 1.01–1.53; \(P = 0.04 \)) [20]. However, it is important to note that these meta-analyses preceded the publication of the 2 randomized trials [9,11]. Therefore, based on these recent studies, there is no indication of increased mortality or a greater need for emergency CABG for either primary or nonprimary PCI at sites without on-site cardiac surgery.

Guidelines, Competency Documents, Policy Statements, and Other Programs

Since 2007, there have been several new documents published that provide guidance for the performance of PCI without on-site surgery. Each new document builds incrementally upon the recommendations from prior documents with slight modifications based on new information. The recommendations for PCI programs without on-site surgery are maturing and becoming uniform over time through the vetting of these recommendations by numerous separate writing committees and undergoing extensive external reviews during document development. Key recommendations for PCI without on-site surgery from those documents are briefly summarized below and have been combined to develop the unified recommendations in this document.
2009 Focused Guideline Update on the Management of Patients with STEMI and Guideline Update on PCI

The 2009 focused update of the ACC/AHA guidelines for the management of patients with STEMI and the ACC/AHA/SCAI guidelines on PCI has been superseded by newer separate guidelines for STEMI and PCI [2,24,25]. However, a number of the recommendations from the 2009 document regarding triage and transfer of patients and the development of local STEMI systems have been incorporated into the current document.

2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention

Compared with prior guidelines, the 2011 ACCF/AHA/SCAI Guidelines for Percutaneous Coronary Intervention stipulated new classification ratings for both primary and elective PCI at hospitals without on-site cardiac surgery [2]. Primary PCI was assigned a class IIa recommendation (*Level of Evidence: B*) stating that primary PCI is “reasonable,” provided appropriate planning for program development has been accomplished. Previously, this was assigned a class IIb recommendation. Elective PCI, previously assigned a class III recommendation, was given a class IIb recommendation (*Level of Evidence: B*) stating it “might be considered in hospitals without on-site cardiac surgery, provided that appropriate planning for program development has been accomplished and rigorous clinical and angiographic criteria are used for proper patient selection”. Elective PCI without on-site cardiac surgical backup was considered appropriate only when performed by experienced operators, with complication rates and outcomes equivalent or superior to national benchmarks. Importantly, the ACCF/AHA/SCAI PCI guidelines state, “desires for personal or institutional financial gain, prestige, market share, or other similar motives are not appropriate considerations for initiation of PCI programs without on-site cardiac surgery.” The guideline assigns a class III recommendation (*Level of Evidence: C*) to performing primary or elective PCI in hospitals without on-site cardiac surgery without a proven plan for
rapid transport to a cardiac surgery operating room in a nearby hospital and without appropriate hemodynamic support capability for transfers. The 2011 PCI guideline document adapted personnel, facility, operator and structural requirements for PCI without on-site surgery from the 2007 SCAI Expert Consensus document [1]. New facility and operator volume requirements were not addressed in the 2011 PCI guidelines but deferred to the 2013 PCI Clinical Competency document [4]. In 2011, ACCF/AHA also published a Guideline for Coronary Artery Bypass Surgery that did not discuss the performance of PCI without on-site surgery [26].

2012 ACCF/SCAI Expert Consensus Document on Cardiac Catheterization Laboratory Standards Update

Similar to the 2011 PCI guidelines, this document presented requirements for PCI at facilities without on-site cardiac surgery that were derived from the 2007 SCAI expert consensus document with some modifications [3]. This document also presented criteria for excluding patients, based on risk and lesion characteristics, from PCI at facilities without on-site cardiac surgery. The document prescribed the quality assurance/quality improvement (QA/QI) program necessary for all cardiac catheterization laboratories with specific recommendations for structure, process, and outcome variables appropriate for monitoring. Moreover, it recommended that all major complications be reviewed by the QA/QI committee at least every 6 months and that any individual operator with complication rates above benchmarks for 2 consecutive 6-month intervals should have the issue directly addressed by the QA director with a written plan for remediation. The document also recommended that a random sample of cases from all operators should be reviewed at least annually.
2013 ACCF/AHA/SCAI Update of the Clinical Competence Statement on Coronary Artery Interventional Procedures

In addition to defining numerous requirements for operator competency, new operator, and facility PCI volume requirements were established [4]. Reflecting the overall decline in PCI volumes, this document recommended that laboratories performing both primary and elective PCI, with and without on-site cardiac surgery, should perform a minimum of 200 PCIs annually. Laboratories performing <200 cases annually must have stringent systems and process protocols in place with close monitoring of clinical outcomes and additional strategies that promote adequate operator and catheterization laboratory staff experience through collaborative relationships with larger volume facilities. The existence of laboratories performing <200 PCIs annually that are not serving isolated or underserved populations should be questioned, and any laboratory that cannot maintain satisfactory outcomes should be closed. This recommendation was based on an extensive review of studies that identified a signal suggesting worse outcomes in laboratories performing <200 PCIs annually. The writing committee recommended that operators perform a minimum of 50 PCIs annually [averaged over 2 years], including no less than 11 primary PCIs annually. Ideally, these procedures should be performed in institutions performing >200 total and >36 primary PCI procedures annually. However, it was emphasized that individual operator volume is but one of several factors that should be considered in assessing operator competence, which include lifetime experience, institutional volume, the operator's other cardiovascular interventions and quality assessment of the operator's ongoing performance. Operators who cannot maintain these case volume recommendations at their primary practice site should maintain privileges and continue to perform PCI procedures at a high-volume institution with on-site surgical backup to meet annual volume requirements. It was also recommended that operators should be board certified in interventional cardiology and maintain certification, with the
exception of operators who have received equivalent training outside the US and are ineligible for board certification in the US.

2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction

This document did not specifically comment on PCI without on-site cardiac surgery but supported the 2011 ACCF/AHA/SCAI PCI guidelines recommendations [25]. It recommended that primary PCI be performed in high-volume, well-equipped centers with experienced interventional cardiologists, and skilled support staff.

2010 European Society of Cardiology and European Association for Cardio-Thoracic Surgery Guidelines

In contrast to the 2011 ACC/AHA/SCAI PCI guidelines, the 2010 European Society of Cardiology and the European Association for Cardio-Thoracic Surgery guidelines on myocardial revascularization do not comment on PCI without on-site surgery or issues related to institutional or operator competency [27]. However, the European guidelines continue to stress the importance of full disclosure regarding the lack of availability of on-site cardiac surgery and the inadvisability of performing PCI for high-risk patients/lesions at facilities that do not have on-site surgical backup.

The European guidelines for STEMI do not provide specific recommendations regarding PCI at centers without on-site surgery [28]. Rather, emphasis is placed on the development of networks between hospitals with differing levels of technology, connected by an efficient emergency transport system. To maximize staff experience, the guidelines recommend that primary PCI centers perform procedures 24 h a day, 7 days a week for all STEMI patients.
Other models mentioned in the European guidelines, although not ideal, include weekly or daily rotation of primary PCI centers or multiple primary PCI centers in the same region. Hospitals that cannot offer a 24/7 service for primary PCI should be allowed to perform primary PCI in patients already admitted for another reason and who develop STEMI during their hospital stay. These hospitals should, however, be discouraged from initiating a service limited to daytime or within-hours primary PCI, because this generates confusion with Emergency Medical Services (EMS) operators and is unlikely to match the door-to-balloon time and quality of intervention of focused 24/7 primary PCI centers. In a survey of European countries, the mean population served by a single primary PCI center varied between 0.3 and 7.4 million inhabitants. In countries offering primary PCI services to the majority of their STEMI patients, this population varied between 0.3 and 1.1 million per center [29]. In small service areas, experience can be suboptimal due to an insufficient number of STEMI patients, but the optimal size of a catchment area could not be clearly defined. For geographical areas where the expected transfer time to a primary PCI center makes it impossible to achieve satisfactory reperfusion times, thrombolysis with subsequent immediate transfer to a primary PCI center has been endorsed. Although there is a risk of intracranial bleeding, a potential role for this strategy in selected circumstances has been emphasized [30].

Other Guidelines and Recommendations

The 2007 SCAI Expert Consensus Document summarized the recommendations from the British Cardiac Society and British Cardiovascular Intervention Society, the Cardiac Society of Australia and New Zealand (CSANZ), the Spanish Society of Cardiology, the Brazilian Society of Hemodynamics and Interventional Cardiology (Sociedade Brasileira de Hemodinamica e Cardiologia Intervencionista) and from several other countries [31–39]. Since 2007, only the guidelines from CSANZ have been updated, most recently in 2011 [32].
CSANZ guidelines state that primary PCI without on-site surgery should be performed: (a) by operators and institutions meeting the overall requirements and standards of primary PCI centers; (b) by institutions with a proven plan for rapid transport to a cardiac surgical center; (c) in a timely fashion (<90 min); and (d) using rigorous case selection criteria. The CSANZ guidelines acknowledged that rural patients might have limited access to diagnostic angiography and PCI, and providing these services at institutions without on-site surgery by appropriately trained individuals facilitates equity of access, which should result in improved quality of care. However, the CSANZ guidelines also specifically state that rural and regional centers should not perform elective, high-risk PCI procedures if they are located more than 1 hour travel time from cardiac surgery centers.

AHA Policy Statement on PCI Without Surgical Backup

In March 2012, the AHA issued a policy statement on PCI without surgical backup defining two major reasons for providing PCI without on-site surgery [40]. First, PCI without on-site surgery is considered reasonable if the intent is to provide high quality timely primary PCI for patients with STEMI. The statement recommended that each community and facility in the community have an agreed-upon plan for how STEMI patients are to be treated. The plan should indicate hospitals that should receive STEMI patients from EMS units capable of obtaining diagnostic electrocardiograms, the management at the initial receiving hospital and written criteria and agreements for the expeditious transfer of patients from nonPCI-capable to PCI-capable facilities. Second, PCI without on-site surgery is a reasonable consideration for providing local care to patients and families who do not want to travel significant distances or who have certain preferred local physicians. This is an important consideration, but the policy statement emphasized that evolving evidence suggests that such centers should have mechanisms in place to ensure high quality care. In addition to emphasizing the current guideline classifications for PCI without on-site surgery, the AHA policy statement provided
recommendations for states wishing to address the issue of PCI without on-site surgery through the regulation of legislation.

Mission Lifeline

The Mission Lifeline program developed in 2006 from a series of conferences sponsored by the AHA and has continued to mature [41–43]. The goal of Mission Lifeline is to improve the quality of care and outcomes for patients with STEMI and to improve healthcare system readiness and response to STEMI. An important focus of Mission Lifeline is to increase the number of patients with timely access to primary PCI. Criteria for the structure and operation of a STEMI referral and STEMI-receiving hospitals are part of the Mission Lifeline initiative and apply to facilities without on-site surgery.

Door-to-Balloon Alliance

The Door-to-Balloon [D2B™] effort began in January 2006 when the ACC recognized the need to reduce D2B times for patients with STEMI. This led to the development of a national initiative to achieve D2B times \(\leq 90 \) min for at least 75% of nontransfer primary PCI patients with STEMI in participating hospitals performing primary PCI. This alliance consists of a nationwide network of hospitals, physician champions and strategic partners committed to improving D2B times. Participation in the Alliance provides the necessary tools; information and support for helping hospitals achieve the D2B treatment goals and encourages the use of real-time performance feedback on D2B times to drive the quality improvement effort [44]. The D2B program has been highly successful, having achieved its initial goals [45].

Access to Primary PCI in the United States

Data from the American Hospital Association and the 2000 US Census were used to estimate the proportion of the adult population (\(\geq 18 \) years of age) who lived within 60 min of a PCI
hospital [46]. An estimated 79.0% lived within a 1 hour drive of a PCI hospital, with a median driving time of 11.3 min. Even among those living closer to non-PCI hospitals, 74% would experience <30 min of additional delay with a direct referral to a PCI hospital. Approximately 5 years later, Concannon et al., using similar data sources and methodology, showed that despite a 44% relative increase in the number of facilities capable of performing PCI, the number of adults within a 1 hour drive of a PCI facility increased to only 79.9%, with the median driving time reduced by <1 min to 10.5 min [47]. Access in rural areas remained far less than in urban areas, with driving times reduced for only 9% of the population compared with the earlier survey. These findings mirrored a smaller experience in Michigan where expansion of primary PCI to 12 hospitals without on-site surgery increased access for only 4.8% of the population [48]. Finally, Horwitz et al. showed that hospitals are more likely to introduce new invasive cardiac services when neighboring hospitals already offer such services and confirmed that the increase in the number of hospitals offering invasive cardiac services has not led to a corresponding increase in geographic access [49]. In total, these data support the argument that the addition of more PCI centers has not substantially improved access to PCI services for most patients.

Financial Considerations for Facilities Providing PCI Without On-site Surgery

Medicare payments to hospitals for invasive cardiac procedures have generally remained favorable, although physician reimbursement has decreased. Per-case revenue margins for PCI are typically higher than the overall hospital operating margins, and PCI improves the hospital case mix index. PCI programs bring prestige to an institution, and STEMI is one of the most prestigious diseases for treatment [50,51]. The push to develop rapid STEMI care has led many to currently advocate for EMS bypassing non-PCI hospitals; there is even consideration being given to triaging patients based on D2B metrics. Exclusion from providing STEMI care might be a lesser financial concern than the loss of downstream
revenue from additional testing in patients suspected of having an acute coronary syndrome. This includes not only testing performed to exclude CAD as the cause of chest pain but also testing to evaluate noncardiac causes of chest pain. This can be an additional financial motivator for developing PCI facilities [52]. How the further bundling of payments and reimbursements on a global or capitated basis by accountable care organizations (ACO) will affect PCI programs is unclear at this time, but given the concerns about the cost of healthcare, increases in payments are unlikely [53,54]. However, even in an ACO environment, hospitals might benefit from keeping cardiovascular procedures in-house where they have the ability to control costs rather than transferring patients to tertiary hospitals.

The Volume-Outcome Relationship for PCI and the Certificate of Need

There are 26 states with Certificate of Need (CON) regulations for the development of cardiac catheterization laboratories, but the effect of such regulations is uncertain. Ho et al. found that the removal of state cardiac CON regulations was associated with an increase in the number of hospitals performing CABG and PCI, but the statewide number of procedures was unchanged. The average procedure volume per hospital for both CABG and PCI therefore declined [55]. Despite this, they found no evidence that CON regulations lowered procedural mortality rates for CABG or PCI. In other studies, CON regulation of cardiac catheterization was associated with care that was judged more appropriate, whereas the removal of CON regulation of cardiac surgery has been associated with an increase in low-volume cardiac surgical centers and increased mortality [56,57]. Concerns have been raised that the proliferation of small centers performing complex procedures that have a small but definite risk of important complications might dilute the ability to provide efficient high quality service [52,58]. Reduced mortality has been associated with an increased volume of primary PCI procedures in centers, higher volume operators, total volume of PCIs in centers, and the commitment of a center to provide PCI rather than fibrinolytic therapy [59–63]. Lieu
et al. reported that redundant or low-volume primary PCI programs were cost ineffective [64]. Elective PCI at centers without on-site surgery was more expensive than PCI at centers with on-site surgery in one case-matched study [65]. In addition, the high fixed costs of a cardiac surgery program in the face of decreasing surgical volumes is leading to the consolidation of numerous smaller surgery programs, depriving some PCI programs of surgical backup.

The issue of a PCI volume-outcome relationship was extensively reviewed in the 2013 PCI Competency document for centers with and without on-site surgery and for primary and elective PCI [4]. The document concluded that in the current era, volume-outcome relationships are not as robust as in the past when balloon angioplasty was the only treatment modality. However, an institutional volume threshold of <200 PCIs annually appeared to be consistently associated with worse outcomes. Primary PCI volume ≤ the guideline-recommended minimum of 36 annually was associated with worse in-hospital mortality in a recent series of over 86,000 patients in the NCDR [66]. The cutoff points of <200 total PCIs annually and ≤36 primary PCIs annually has important implications because 26% of the PCI facilities submitting data to the NCDR performed ≤200 total PCIs annually and 38% performed ≤36 primary PCIs annually [8,66]. Recent data suggested a modest volume-outcome relationship for variables other than mortality, but these data have limitations and are not consistent across all studies [4]. Although there was an association between annual PCI volumes <200 and worse outcomes, there was no association between higher annual hospital volumes and improved outcomes at higher volume PCI centers. There was less evidence to support a threshold for individual operator volume for both elective and primary PCI.
Recommendations

We have provided recommendations for PCI without on-site surgery that are a composite of recommendations from the 2007 SCAI Expert Consensus Statement, the 2011 PCI guidelines, the 2012 Expert Consensus Document on Cardiac Catheterization Laboratory Standards, the 2013 PCI Competency statement and recommendations from the policy statement of the American Heart Association and requirements for the Mission Lifeline program and D2B Alliance [1–4,40,43,44]. Redundant recommendations from these documents were consolidated, and the writing committee included several new recommendations consistent with evolving practice standards.

Facility Requirements for PCI Programs Without On-Site Surgery

Facility requirements are similar to those presented in past documents but now include a greater emphasis on the presence of quality review programs for facilities and operators, as described in the 2013 PCI competency document (4) (Table 3). Diagnostic modalities such as IVUS and especially fractional flow reserve previously considered desirable for facilities without on-site surgery have now increased in importance and are necessary for all PCI centers.

The 2013 PCI Competency Document identified a signal suggesting that an institutional volume threshold of <200 PCIs/year was associated with worse outcomes. Therefore, the 2013 Competency Document recommended that the continued operation of laboratories performing <200 procedures annually that are not serving isolated or underserved populations be questioned and that any laboratory that cannot maintain satisfactory outcomes should be closed. Past documents have not specified any criteria for geographic isolation. The writing committee suggests it be defined not by distance but by the time required for emergency transport of a STEMI patient to another facility. Hospitals justify the creation of new PCI centers without on-site surgery by stating that they improve
access for geographically under-served populations and allow patients to be cared for in close geographic proximity to their own families and physicians. However, multiple low-volume and partial-service PCI centers within a geographic area diffuse PCI expertise, increase costs for the overall health system and have not been shown to improve access [46–49]. If the transfer time is ≤30 min, it is reasonable to assume that transfer to the nearest PCI center will provide reperfusion as rapidly as if it were available at the first hospital. For transport times longer than 30 min, performing PCI on-site is likely to be quicker than a transfer. The development of PCI facilities within a 30-min emergency transfer time to an established facility is therefore strongly discouraged.

What constitutes a reasonable transport time for a patient requiring emergency surgery has not been consistently addressed in prior documents. Both CPORT-E and MASS-COMM studies provide guidance contained in their on-line supplementary materials [9,11]. Both require a transport vehicle to be available to begin transport within 30 min and arrival at the surgical hospital within 60 min of the decision to declare the need for emergency surgery. MASS-COMM further recommends that surgical intervention begin within 120 min. Given the existing data on the distribution of PCI facilities in the US, the performance of elective PCI at facilities that cannot meet these transfer times is discouraged [46,47].

The 2013 PCI competency document also states that any laboratory that cannot maintain satisfactory outcomes should be closed; however, there is currently no national definition for “satisfactory outcomes”. The writing committee recommends that these be defined by each PCI center, including those with on-site surgery, as part of their quality review process, using national benchmark data. Programs failing to meet established criteria for satisfactory performance for two consecutive quarters must undertake efforts to improve their performance, engaging outside experts if necessary. Failure to improve quality metrics should lead to program closure regardless of the location. To ensure proper assessment and monitoring, laboratories are required to submit data to a national data registry, have regular
meetings to discuss key performance metrics and develop plans for the correction of any deficiencies. Especially with facility PCI volumes decreasing, it becomes increasingly difficult to determine whether there are significant differences in the data reports from year to year. For example, to detect (with statistically certainty) a doubling of in-hospital mortality from 1% to 2% at a hospital with an annual case volume of 200 PCIs, nearly 4 years of continuous data collection would be required. This does not negate the importance of data submission to a national registry that can help identify trends, but it emphasizes why these same data must be carefully evaluated and adjudicated at the local facility. The importance of unbiased local or external peer review cannot be overemphasized [67,68]. Implementation of the SCAI Quality Toolkit and certification by Accreditation for Cardiovascular Excellence [ACE] are recommended as resources for improving quality [69,70].

Personnel Requirements for PCI Programs Without On-Site Surgery

Recognizing the potential for isolation and the advantage of clinical experience, the 2007 SCAI Expert Consensus Document included a recommendation that operators at PCI programs without on-site surgery perform at least 100 total and 18 primary PCIs annually, a recommendation that might not be achievable in the current environment. The 2013 PCI Competency Document moves away from strict volume requirements to focus more on achieving quality metrics for facilities and individual operators. As noted earlier, the 2013 Competency document recommended that operators perform a minimum of 50 PCIs annually (averaged over 2 years), including no less than 11 primary PCIs annually. Ideally, these procedures should be performed in institutions performing >200 total and >36 primary PCI procedures annually (Table 4). Again acknowledging the importance of experience, the 2007 SCAI Expert Consensus Document suggested that initial operators at a new program without on-site surgery should have a lifetime experience of >500 PCIs as primary operator after completing a fellowship. In the current environment of decreasing PCI volumes and in view
of the recommendations of the 2013 PCI competence document, this number would be
difficult to achieve. Nevertheless, it is unwise for a newly trained interventional cardiologist
to start a new PCI program. Newly trained interventional cardiologists joining an established
PCI program should be mentored by more experienced physicians until it is determined that
the skills, judgment and outcomes of these new cardiologists are acceptable.

Requirements for Off-Site Surgical Backup

Recommendations for the interactions between cardiologists and cardiac surgeons are listed
in Table 5. A limitation of programs performing PCI without on-site surgery is the lack of on-
site access to a cardiac surgeon for consultation about revascularization options. This makes
the concept of a Heart Team consultation more difficult to achieve and could necessitate
performing only diagnostic catheterization until a case review with a cardiac surgeon can be
performed. The application of telemedicine consultations with a heart surgeon could facilitate
these interactions. In reality, many of the nonemergency patients who merit discussion by a
Heart Team are not optimal candidates for PCI at facilities without on-site cardiac surgery. It
is important to emphasize that the role of the cardiac surgeon is not confined to the treatment
of PCI complications but includes the participation in decisions about revascularization
options. Recommendations for case selection at facilities without on-site surgery are shown
in Table 5, and criteria for identifying high-risk lesions and patients are contained in Table 6.
There are statistical models for identifying PCI patients at higher risk for mortality or
emergency CABG that could be helpful for identifying patients who should not undergo PCI
at facilities without on-site surgery [18,71]. However, these models have not been tested or
applied on a large scale to determine the advisability of performing a PCI at facilities without
on-site surgery.
The Delivery of PCI Services in the Future

As a result of the additional randomized studies on PCI without on-site surgery and the recent change in guideline recommendations, the performance of PCI without on-site surgery in the US has gained greater acceptance, and questions about its safety in the presence of a proven, well defined, and protocol driven approach have diminished. PCI programs should be evaluated based on their ability to: (a) sustain adequate quality metrics, (b) provide access to elective and emergency PCI procedures that would otherwise be unavailable in their service area, and (c) maintain the operator and institutional volumes recommended in the 2013 PCI Competency Document. For the future, the focus must now shift to developing a rational plan for the distribution of PCI services. Small PCI programs with large fixed costs are inefficient and unnecessary if they do not improve access in areas of need. However, it is unlikely that issues of system-wide efficiency will be addressed without central planning on the state or federal level. This writing group reaffirms the statement from the 2011 ACCF/AHA/SCAI PCI Guidelines that “desires for personal or institutional financial gain, prestige, market share, or other similar motives are not appropriate considerations for initiation of PCI programs without on-site cardiac surgery” and suggests that new programs offering PCI without on-site surgery are inappropriate unless they clearly serve geographically isolated populations. The writing group recognizes the need for ongoing study and surveillance of all PCI programs through participation in national databases encourages public reporting of their results and acknowledges that further declines in PCI volumes might necessitate the closure of PCI programs in the future.
REFERENCES

10. Personal communication. John Rumsfeld, MD PhD. National Director of Cardiology, U.S. Veterans Health Administration.

27. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI), Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, Garg S, Huber K, James S, Knuuti J, Lopez-Sendon J, Marco J, Menicanti L, Ostojic M, Piepoli MF, Pirlet C, Pomar JL, Reifart N,

43. Mission Lifeline Program.

Figure 1. PCI volume at facilities with and without cardiac surgery. (Reproduced from Ref [8] with permission.
Figure 2. Change in the availability of PCI without on-site surgery from 2007 to 2013. The numbers shown indicate the number of states where primary and nonprimary PCI without on-site surgery are allowed.
Table 1. Studies on Primary PCI Without On-site Surgery Published Since 2006

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Sites</th>
<th>On-site Surgery</th>
<th>No. of Patients in Arm</th>
<th>Incidence % Mortality</th>
<th>OR (95% CI)</th>
<th>Emergency CABG</th>
<th>Incidence %</th>
<th>OR (95% CI)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlsson (2007)</td>
<td>Multicenter</td>
<td>No</td>
<td>857</td>
<td>7.0</td>
<td>1.05 (0.79–1.40)</td>
<td>0.1</td>
<td>30-day mortality is reported; Incidence of emergency CABG is for all patients (primary and nonprimary PCI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[12]</td>
<td>SCAAAR</td>
<td>4,595</td>
<td>6.7</td>
<td>2.17 (0.26–17.8)</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peels (2007)</td>
<td>Single center</td>
<td>No</td>
<td>336</td>
<td>2.1</td>
<td>2.17 (0.26–17.8)</td>
<td>0</td>
<td>0.10</td>
<td>(0.00–2.51)</td>
<td></td>
</tr>
<tr>
<td>[13]</td>
<td>Registry</td>
<td>Yes</td>
<td>103</td>
<td>0.97</td>
<td>1.0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pereira (2008)</td>
<td>Multicenter</td>
<td>No</td>
<td>1,214</td>
<td>5.0</td>
<td>0.79 (0.55–1.14)</td>
<td>1.8</td>
<td>1.52</td>
<td>(0.90–2.56)</td>
<td>Cardiogenic shock mortality was 53.4% with on-site surgery and 50.9% without (NS)</td>
</tr>
<tr>
<td>[14]</td>
<td>Portuguese</td>
<td>Yes</td>
<td>1,470</td>
<td>4.0</td>
<td>1.8</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kutcher (2009)</td>
<td>Multicenter</td>
<td>No</td>
<td>1,934</td>
<td>5.1</td>
<td>0.97 (0.79–1.20)</td>
<td>0.7</td>
<td>0.60</td>
<td>(0.35–1.03)</td>
<td>In-hospital mortality reported. Only 42% of sites without on-site surgery performed ≥36 primary PCIs annually compared with 80% of sites with on-site surgery</td>
</tr>
<tr>
<td>[15]</td>
<td>NCDR</td>
<td>Yes</td>
<td>31,099</td>
<td>5.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pride (2009)</td>
<td>Multicenter</td>
<td>No</td>
<td>1,795</td>
<td>3.3</td>
<td>0.86 (0.61–1.23)</td>
<td>0.35</td>
<td>Propensity matched patient cohort. In-hospital mortality reported and only for patients undergoing primary PCI. Incidence of emergency CABG not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[16]</td>
<td>NRMI</td>
<td>Yes</td>
<td>1,795</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hannan (2009)</td>
<td>Multicenter</td>
<td>No</td>
<td>1,729</td>
<td>2.3</td>
<td>1.22 (0.76–1.94)</td>
<td>0.06</td>
<td>0.17</td>
<td>(0.02–1.38)</td>
<td>Propensity matched patient cohort. In-hospital/30-day mortality reported</td>
</tr>
<tr>
<td>[17]</td>
<td>New York State</td>
<td>Yes</td>
<td>1,729</td>
<td>1.9</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh (2009)</td>
<td>3 sites</td>
<td>No</td>
<td>667</td>
<td>2.5</td>
<td>0.80 (0.42–1.54)</td>
<td>0.7</td>
<td>1.25</td>
<td>(0.33–4.68)</td>
<td>Propensity matched patient cohort of nonelective PCI defined as acute MI within 24 h or cardiogenic shock.</td>
</tr>
<tr>
<td>[18]</td>
<td>Mayo Clinic experience</td>
<td>Yes</td>
<td>667</td>
<td>3.1</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zia (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9 studies included in the analysis</td>
</tr>
<tr>
<td>[19]</td>
<td></td>
<td></td>
<td></td>
<td>8,703</td>
<td>6.1</td>
<td>0.93</td>
<td>(0.83–1.05)</td>
<td>3.0</td>
<td>0.87</td>
</tr>
<tr>
<td>Singh M (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 studies included in the analysis</td>
</tr>
<tr>
<td>[20]</td>
<td></td>
<td></td>
<td></td>
<td>107,585</td>
<td>7.2</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CABG, coronary artery bypass graft surgery; NCDR, National Cardiovascular Data Registry; NRMI, National Registry of Myocardial Infarction; OR, odds ratio; PCI, percutaneous coronary intervention; SCAAAR, Swedish Coronary Angiography and Angioplasty Registry.
Table 2. Studies on Nonprimary PCI Without On-site Surgery Published Since 2006

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Sites</th>
<th>On-site Surgery</th>
<th>No. of Patients in Arm</th>
<th>Mortality Incidence %</th>
<th>OR (95% CI)</th>
<th>Emergency CABG Incidence %</th>
<th>OR (95% CI)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlsson (2007) [12]</td>
<td>Multicenter SCAAAR</td>
<td>No</td>
<td>7,981</td>
<td>0.81</td>
<td>1.23 (0.91–1.65)</td>
<td>0.1</td>
<td>30-day mortality is reported; Incidence of emergency CABG is for all patients (primary and nonprimary PCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registry</td>
<td>Yes</td>
<td>20,930</td>
<td>0.66</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frutkin (2008) [21]</td>
<td>2 sites Registry</td>
<td>No</td>
<td>1,090</td>
<td>0.09</td>
<td>0.11</td>
<td>0.2</td>
<td>6.10</td>
<td>Nonrandomized comparison of 2 sites. Stable and unstable angina plus NSTEMI included. In-hospital mortality shown</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>3,317</td>
<td>0.8</td>
<td>0.01–0.79</td>
<td>0.03 (0.55–67.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pereira (2008) [14]</td>
<td>Multicenter Portuguese Registry</td>
<td>No</td>
<td>4831</td>
<td>0.5</td>
<td>1.43 (0.85–2.41)</td>
<td>0.7</td>
<td>3.14 (2.13–4.63)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>5584</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kutcher (2009) [15]</td>
<td>Multicenter NCDR Registry</td>
<td>No</td>
<td>6,802</td>
<td>0.8</td>
<td>0.99 (0.76–1.30)</td>
<td>0.2</td>
<td>0.69 (0.40–1.16)</td>
<td>72% of sites without on-site surgery performed <200 PCIs annually compared with 6% among sites with on-site surgery</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>268,312</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pride (2009) [22]</td>
<td>Multicenter NRMI Registry</td>
<td>No</td>
<td>1,282</td>
<td>1.0</td>
<td>0.76 (0.37–1.58)</td>
<td>0.3</td>
<td></td>
<td>Only patients with NSTEMI included in study cohort</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1,282</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh (2009) [18]</td>
<td>3 sites Mayo clinic Experience</td>
<td>No</td>
<td>1,842</td>
<td>0.2</td>
<td>0.57 (0.17–1.95)</td>
<td>0</td>
<td>1.00 (0.02–50.4)</td>
<td>Propensity matched patient cohort</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1,842</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aversano (2012) [9]</td>
<td>Multicenter Randomized Trial</td>
<td>No</td>
<td>14,149</td>
<td>0.9</td>
<td>1.96 (0.17–1.95)</td>
<td>0.3</td>
<td>2.30 (0.3–18.6)</td>
<td>Mortality reported after 6 weeks and incidence of emergency CABG shown.</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>4,718</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacobs (2013) [11]</td>
<td>Multicenter Randomized Trial</td>
<td>No</td>
<td>2,774</td>
<td>0.7</td>
<td>1.96 (0.58–6.64)</td>
<td>0.3</td>
<td>2.30 (0.3–18.6)</td>
<td>All-cause and cardiac mortality at 30 days were no different. PCI without on-site surgery was not inferior</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>917</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Continued

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Sites</th>
<th>On-site Surgery</th>
<th>No. of Patients in Arm</th>
<th>Mortality</th>
<th>Emergency CABG</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incidence</td>
<td>OR (95% CI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incidence</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zia (2011) [19]</td>
<td>No</td>
<td>28,552</td>
<td>1.6</td>
<td>1.03</td>
<td>1.38</td>
<td>6 studies included in the analysis</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>881,261</td>
<td>2.1</td>
<td>(0.64–1.66)</td>
<td>0.9</td>
<td>(0.65–2.95)</td>
</tr>
<tr>
<td>Singh M (2011) [20]</td>
<td>No</td>
<td>30,423</td>
<td>0.9</td>
<td>1.15</td>
<td>0.17</td>
<td>9 studies included in the analysis</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>883,865</td>
<td>0.8</td>
<td>(0.93–1.41)</td>
<td>0.29</td>
<td>(0.52–2.85)</td>
</tr>
<tr>
<td>Singh PP (2011) [23]</td>
<td>No</td>
<td>1,812</td>
<td>0.17</td>
<td>2.3</td>
<td>0.11</td>
<td>4 studies included in the analysis but only 2 with data on mortality and CABG; Risk ratios rather than OR are reported in this analysis</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>4,039</td>
<td>0.72</td>
<td>(0.60–12.97)</td>
<td>0.02</td>
<td>(0.07–3.19)</td>
</tr>
</tbody>
</table>

CABG, coronary artery bypass graft surgery; NCDR, National Cardiovascular Data Registry; NRMI, National Registry of Myocardial Infarction; OR, odds ratio; PCI, percutaneous coronary intervention; SCAAR, Swedish Coronary Angiography and Angioplasty Registry.
Table 3. Facility Requirements for PCI Programs Without On-Site Surgery

<table>
<thead>
<tr>
<th>General Recommendations</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requisite support equipment must be available and in good working order to respond to emergency situations.</td>
<td>PCI-GL, PCI-CS, ML</td>
</tr>
<tr>
<td>Should demonstrate appropriate planning for program development and should complete both a primary PCI development program and an elective PCI development program. Program developments to include routine care process and case selection review.</td>
<td>AHA, D2B</td>
</tr>
<tr>
<td>Full support from hospital administration in fulfilling the necessary institutional requirements, including appropriate support services such as intensive care, advanced imaging (CT, MR and other vascular imaging), respiratory care, blood bank and nephrology consultation with access to dialysis.</td>
<td>PCI-GL, PCI-CS, ECD</td>
</tr>
<tr>
<td>The institution should have systems for credentialing and governing the PCI program. On-site data collection, quality assessment, quality improvement and error management are essential. Each institution must establish an ongoing mechanism for valid and continuous peer review of its quality and outcomes. A quality improvement program should routinely 1) review quality and outcomes of the entire program; 2) review results of individual operators; 3) include risk adjustment; 4) provide peer review of difficult or complicated cases; and 5) perform random case reviews. The review process should assess the appropriateness of the interventional procedures. Evaluation should include the clinical indications for the procedure, technical performance and the quality and interpretation of the coronary angiograms.</td>
<td>PCI-CS, AHA, PCI-CS, ECD</td>
</tr>
<tr>
<td>Written agreements for emergency transfer of patients to a facility with cardiac surgery must exist. Transport protocols should be tested a minimum of 2 times per year involving both the referring and receiving facility. Develop agreements with a ground or air ambulance service capable of advanced life support and IABP transfer that guarantees a transport vehicle will be on-site to begin transport in ≤30 min and arrival at the surgical hospital within 60 min of the decision to declare the need for emergency surgery. Tertiary facility must agree to accept emergent and nonemergent transfers for additional medical care, cardiac surgery or intervention. Tertiary centers should be able to establish cardiopulmonary bypass on emergency transfer patients within <120 min of an urgent referral.</td>
<td>PCI-GL, AHA, PCI-CS, ECD, New</td>
</tr>
<tr>
<td>Well-equipped and maintained cardiac catheterization laboratory with high-resolution digital imaging capability. The capability for real-time transfer of images and hemodynamic data [via T-1 transmission line] as well as audio and video images to review terminals for consultation at the facility providing surgical backup support is highly recommended. Appropriate inventory of interventional equipment, including guide catheters, balloons and stents in multiple sizes; thrombectomy and distal protection devices; covered stents; temporary pacemakers; and pericardiocentesis trays. Access to other diagnostic modalities such as intravascular ultrasound and fractional flow reserve is required. Rotational or other atherectomy devices and the treatment of CTOs should not be performed in facilities without on-site surgery.</td>
<td>PCI-CS, PCI-Gl, New</td>
</tr>
<tr>
<td>Meticulous clinical and angiographic selection criteria for PCI (Table 5).</td>
<td>PCI-Gl, AHA</td>
</tr>
<tr>
<td>Participation in a national data registry, such as the ACC NCDR in the United States is required. This allows benchmarking, risk adjustment and facilitates outcomes analysis of local data. A program should be in place to track and ensure treatments with ACC/AHA guideline-based Class I therapies, both acutely and at discharge.</td>
<td>PCI-Gl, ECD, AHA</td>
</tr>
<tr>
<td>Full service laboratories [both primary and elective PCI, with and without on-site cardiac surgery] performing <200 cases annually must have stringent systems and process protocols with close monitoring of clinical outcomes and additional strategies that promote adequate operator and catheterization laboratory staff experience through collaborative relationships with larger volume facilities. Both physicians and staff should have the opportunity to work</td>
<td>PCI-Gl, PCI-CS, ML</td>
</tr>
</tbody>
</table>
at a high volume center to enhance their skills. The continued operation of laboratories performing <200 procedures annually that are not serving isolated or underserved populations should be questioned and any laboratory that cannot maintain satisfactory outcomes should be closed.

Geographic isolation exists if the emergency transport time to another facility is >30 min.

Satisfactory outcomes should be defined by each local facility as part of their quality review process and should be based on national or regional benchmarks. Programs that fail to meet their established criteria for satisfactory performance for 2 consecutive quarters must undertake efforts to improve engaging outside experts if necessary. Failure to improve quality metrics should also be grounds for program closure regardless of the location.

As part of the local continuous quality improvement program, there should be a regular review of all patients transferred for emergency surgery with the outcome of surgery and identification of improvement opportunities.

STEMI Treatment Recommendations

Each community should develop a STEMI system of care that follows standards at least as strong as those developed for Mission Lifeline, including:

- Performance of primary PCI as the first-choice treatment for STEMI to ensure streamlined care paths and increased case volumes.
- A process for prehospital identification and activation.
- Protocols for triage, diagnosis and cardiac catheterization laboratory activation should be established within the primary PCI hospital/STEMI-Receiving Center.
- A single activation phone call should alert the STEMI team. Criteria for EMS activation of the cardiac catheterization laboratory should be established in conjunction with EMS providers.
- Transfer protocols for patients who arrive at STEMI referral centers who are in cardiogenic shock and/or are primary PCI candidates ineligible for fibrinolytic drugs.

STEMI receiving centers should be available and on-call 24 hours/7 days a week (no diversion) to perform primary PCI. Primary PCI should not be performed at facilities unless it is provided on a 24/7 schedule. The cardiac catheterization laboratory staff and interventional cardiologist should arrive within 30 min of a STEMI activation call. Facilities should have a plan for triage and treatment of simultaneous presentation of STEMI patients.

STEMI receiving centers should perform a minimum of 36 primary PCI procedures annually, and these procedures should ideally be performed at facilities that perform a minimum of 200 total PCI procedures annually.

Facilities performing only primary PCI should perform a minimum of 36 primary PCIs annually and work in collaboration with a high volume PCI facility to ensure good outcomes.

There should be a recognized STEMI-Receiving Center liaison/system coordinator to the system and a recognized physician champion.

The STEMI-Receiving Centers should participate in the Mission Lifeline-approved data collection tool, ACTION Registry-Get with the Guidelines™. They should also participate in the regional Mission Lifeline Stakeholder group (if available) to contribute to the development of a regional STEMI System of Care Plan.

Monthly multidisciplinary team meetings to evaluate outcomes and quality improvement data. Operational issues should be reviewed, problems identified, and solutions implemented. The following measurements should be evaluated on an ongoing basis:

a. Door-to-first device time, nontransfer patients
b. STEMI Referral Hospital ED door-to-balloon [first device used] time
c. First medical contact to balloon inflation [first device used] time, nontransfer patients
d. First medical contact to balloon inflation [first device used] time, transfer patients
e. Proportion of eligible patients receiving reperfusion therapy
f. Proportion of eligible patients administered guideline-based class I therapies
g. Proportion of patients with field diagnosis of STEMI and activation of the Cardiac Catheterization Laboratory for intended primary PCI who
 i. do not undergo acute catheterization because of misdiagnosis
 ii. undergo acute catheterization and found to have no elevation in cardiac biomarkers and no revascularization in the first 24 h
h. In-hospital mortality

*Required for U.S. facilities but might not be possible for all facilities worldwide.

ACC, American College of Cardiology; AHA, American Heart Association policy statement; CT, computed tomography; CTO, chronic total occlusion; D2B, Door-to-Balloon Alliance; ECD, 2012 Expert Consensus Document on Cardiac Catheterization Standards; EMS, emergency medical systems; GL, Guidelines; IABP, intra-aortic balloon pump; IVUS, intravascular ultrasound; ML, Mission Lifeline; MR, magnetic resonance; New, New recommendation in this document; NCDR, National Cardiovascular Data Registry; PCI-CS, 2013 PCI Competency Statement; PCI-GL, 2011 ACCF/AHA/SCAI PCI guidelines; PCI, percutaneous coronary intervention; SCAI, Society for Cardiovascular Angiography and Interventions; and STEMI, ST-segment elevation myocardial infarction.

Italics font: New or modified recommendation in the document.
Table 4. Personnel Requirements for PCI Programs Without On-Site Surgery

<table>
<thead>
<tr>
<th>Personnel Recommendations</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experienced nursing and technical laboratory staff with training in interventional laboratories. Personnel must be comfortable treating acutely ill patients with hemodynamic and electrical instability.</td>
<td>PCI GL</td>
</tr>
<tr>
<td>Coronary care unit nursing staff must be experienced and comfortable with invasive hemodynamic monitoring, operation of temporary pacemaker, management of IABP, management of in-dwelling arterial/venous sheaths and identifying potential complications such as abrupt closure, recurrent ischemia and access site complications.</td>
<td>PCI-Gl PCI-CS New</td>
</tr>
<tr>
<td>Personnel should be capable of endotracheal intubation and ventilator management both on-site and during transfer if necessary.</td>
<td>PCI-Gl</td>
</tr>
<tr>
<td>Operators should have ABIM board certification in interventional cardiology and maintain certification, with the exception of operators who have gone through equivalent training outside the United States and are ineligible for ABIM certification and recertification exams.</td>
<td>PCI CS PCI-CS</td>
</tr>
<tr>
<td>Interventional cardiologists should perform a minimum of 50 coronary interventional procedures per year [averaged over a 2-year period] to maintain competency.</td>
<td>PCI-CS</td>
</tr>
<tr>
<td>Primary PCI should be performed by experienced operators who perform a minimum of 50 elective PCI procedures per year and, ideally, at least 11 primary PCI procedures per year. Ideally, these procedures should be performed in institutions that perform more than 200 elective PCIs per year and more than 36 primary PCI procedures for STEMI per year.</td>
<td>PCI-CS ML</td>
</tr>
<tr>
<td>Facilities should develop internal review processes to assess operators performing <50 PCIs annually. Individual operator level volume is one of several factors that should be considered in assessing operator competence, which include lifetime experience, institutional volume, individual operator's other cardiovascular interventions and quality assessment of the operator's ongoing performance.</td>
<td>PCI-CS</td>
</tr>
<tr>
<td>It is unwise for a newly trained interventional cardiologist to start a new PCI program. Newly trained interventional cardiologists joining an established PCI program should be mentored by existing physicians until it is determined their skills, judgment and outcomes are acceptable.</td>
<td>New</td>
</tr>
</tbody>
</table>

Italics font: New or modified recommendation in the document.
Table 5. Recommendations for Off-Site Surgical Backup and Case Selection

<table>
<thead>
<tr>
<th>Recommendations–Cardiologist–Cardiac Surgeon Interactions</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventional cardiologists must establish a working relationship with cardiac surgeons at the receiving facility.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Cardiac surgeons should have privileges at the referring facility to allow review of treatment options as time allows.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Ideally, face-to-face meetings between cardiothoracic surgeons and cardiologists involved should occur on a regular basis (Heart Team approach) especially for the discussion of management of patients undergoing nonprimary PCI who have left main, three-vessel CAD or two-vessel CAD with involvement of the LAD or comorbidities such as diabetes, depressed LV function or complex anatomy.</td>
<td>PCI-GL ECD New</td>
</tr>
<tr>
<td>Cardiac surgeon and receiving hospital agree to provide cardiac surgical backup for urgent cases at all hours and for elective cases at mutually agreed hours.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Surgeon and receiving facility ensure that patients will be accepted based on medical condition, capacity of surgeon to provide services at the time of request and availability of resources. If this cannot be ensured before the start of an elective procedure, the case should not be done at that time.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Interventional cardiologists must review with surgeons the immediate needs and status of any patient transferred for urgent surgery.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Interventional cardiologist should be familiar with and have immediate access to appropriate life support devices, such as an intraaortic balloon pumps, and should be qualified for handling emergencies such as pericardial tamponade and embolization.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Hospital administrations from both facilities endorse the transfer agreement.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Transferring physicians obtain consent for surgery from patients or appropriate surrogates.</td>
<td>PCI-GL ECD</td>
</tr>
<tr>
<td>Initial informed consent for PCI discloses that the procedure is being performed without on-site surgical backup and acknowledges the possibility of risks related to transfer. The consent process should include the risk of urgent surgery and state that a written plan for transfer exists. Consent for PCI should be obtained before the procedure and before any sedatives are given. Consent for PCI obtained while the patient is on the table is not informed consent and is unacceptable in non-emergency situations.</td>
<td>PCI-GL ECD New</td>
</tr>
</tbody>
</table>

Recommendations - Case Selection and Management

Avoid intervention in patients with:
- >50% diameter stenosis of left main artery proximal to infarct-related lesion, especially if the area in jeopardy is relatively small and overall LV function is not severely impaired. **PCI-GL ECD New**
- Long, calcified, or severely angulated target lesions at high risk for PCI failure with TIMI flow grade 3 present during initial diagnostic angiography.
- Lesions in areas other than the infarct artery (unless they appeared to be flow limiting in patients with hemodynamic instability or ongoing symptoms).
- Lesions with TIMI flow grade 3 in patients with left main or three-vessel disease where bypass surgery is likely a superior revascularization strategy compared with PCI.
- Culprit lesions in more distal branches that jeopardize only a modest amount of myocardium when there is more proximal disease that could be worsened by attempted intervention.
- *Chronic total occlusion.*
The management of patients with STEMI resuscitated from sudden cardiac death is complex, and decisions about the need for immediate PCI with or without therapeutic hypothermia or possible transfer to a tertiary facility for treatment should be individualized.

Emergency transfer for coronary bypass surgery patients with

- High-grade left main or three-vessel coronary disease with clinical or hemodynamic instability after successful or unsuccessful PCI of an occluded vessel and preferably with IABP support.
- Failed or unstable PCI result and ongoing ischemia, with IABP support during transfer.

CTO, chronic total occlusion; ECD, 2012 Expert Consensus Document on Cardiac Catheterization Standards; PCI-GL, 2011 ACCF/AHA/SCAI PCI Guidelines; IABP, intraaortic balloon pump; LV, left ventricle; New, new recommendation in this document; PCI, percutaneous coronary intervention; TIMI, thrombolysis in myocardial infarction.

Italics font: New or modified recommendation in the document
Table 6. Patient and Lesion Characteristics That Could Be Unsuitable for Nonemergency Procedures at Facilities Without On-Site Cardiac Surgery

<table>
<thead>
<tr>
<th>High-risk patients</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Decompensated congestive heart failure [Killip Class ≥3] without evidence for active ischemia.</td>
<td>PCI-GL</td>
</tr>
<tr>
<td>• Recent [<8 weeks] cerebrovascular accident.</td>
<td>AHA</td>
</tr>
<tr>
<td>• Advanced malignancy.</td>
<td>ECD</td>
</tr>
<tr>
<td>• Known clotting disorders.</td>
<td></td>
</tr>
<tr>
<td>• LVEF ≤30%.</td>
<td></td>
</tr>
<tr>
<td>• Chronic kidney disease [creatinine >2.0 mg/dL or creatinine clearance <60 mL/min].</td>
<td></td>
</tr>
<tr>
<td>• Serious ongoing ventricular arrhythmias.</td>
<td></td>
</tr>
<tr>
<td>• Patients with left main stenosis [>50% diameter] or three-vessel disease unprotected by prior bypass surgery [>70% stenoses in the proximal or mid segments of all major epicardial coronary arteries], treatment of any or all stenoses. Scoring systems, such as SYNTAX may be useful in defining the extent of disease and type of revascularization procedure.</td>
<td></td>
</tr>
<tr>
<td>• Patients with a single-target lesion that jeopardizes an extensive amount of myocardium.</td>
<td></td>
</tr>
<tr>
<td>• Patients undergoing intervention on the last remaining conduit to the heart.</td>
<td></td>
</tr>
</tbody>
</table>

High-risk lesions

<table>
<thead>
<tr>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI-GL</td>
</tr>
</tbody>
</table>

• Unprotected left main stenosis.
• Diffuse disease [>20 mm in length].
• Extremely angulated segment [>90%] or excessive proximal or in-lesion tortuosity.
• More than moderate calcification of a stenosis or proximal segment.
• Inability to protect major side branches.
• Degenerated older vein grafts with friable lesions.
• Substantial thrombus in the vessel or at the lesion site.
• Any other feature that could, in the operator’s judgment, impede successful stent deployment.
• Anticipated need for rotational or other atherectomy device, cutting balloon or laser.

The characteristics listed above identify high-risk patient and lesion features but are not absolute contraindications to performing PCI at a facility without on-site surgery. For example, an elevated creatinine levels increases the procedure risk for the patient, but this is not unique to facilities without on-site surgery and treatments to mitigate this complication can be used at all facilities. Ultimately, the operator should consider all factors and make a decision about the suitability of the patient for PCI at the facility.
Strategy for surgical backup based on lesion and patient risk

- High-risk patients with high-risk lesions should not undergo nonemergency PCI at a facility without on-site surgery.
- High-risk patients with nonhigh-risk lesions: Nonemergency patients with this profile may undergo PCI, but confirmation that a cardiac surgeon and operating room are immediately available is necessary.
- Non-high-risk patients with high-risk lesions require no additional precautions.
- Non-high-risk patients with nonhigh-risk lesions require no additional precautions. Best scenario for PCI without on-site surgery.

CTO, chronic total occlusion; ECD, 2012 Expert Consensus Document on Cardiac Catheterization Standards; PCI-GL, 2011 ACCF/AHA/SCAI PCI Guidelines; LVEF, left ventricular ejection fraction; New, new recommendation; PCI, percutaneous coronary intervention; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery.

Italics font: New or modified recommendation in the document.
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—SCAI/ACC/AHA Expert Consensus Document: 2014 Update on Percutaneous Coronary Intervention Without On-Site Surgical Backup

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
</table>
| James C. Blankenship | Geisinger Medical Center—Director, Cardiac Catheterization Laboratory | None | None | None | • Abiomed*
• Astra-Zeneca*
• Boston Scientific*
• Kai Pharmaceutical*
• Novartis*
• Schering Plough
• The Medicines Company*
• Volcano* | • SCAI—Vice President* | None |
| Mehmet Cilingiroglu | Arkansas Heart Hospital | None | None | None | None | None | None |
| Greg J. Dehmer (Chair) | Texas A&M College of Medicine, Scott & White Clinic Cardiology Division—Professor of Medicine; Director of Cardiology | None | None | None | None | None | None |
| James G. Dwyer | Heart and Vascular Center of Northern Arizona | None | None | None | None | None | None |
| Dmitry N. Feldman | New York Presbyterian Hospital/Cornell
• Gilead
• Maquet
• Abbott Vascular
• Bristol Myers Squibb*
• Daiichi-Sankyo
• Eli Lilly
• Pfizer
• The Medicines Company* | None | None | None | None | None | None |
| Timothy J. Gardner | Christiana Care Health System—Medical Director | None | None | None | None | None | None |
This table represents all healthcare relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$10,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to http://www.cardiosource.org/Science-And-Quality/Practice-Guidelines-and-Quality-Standards/Relationships-With-Industry-Policy.aspx for definitions of disclosure categories or additional information about the ACCF Disclosure Policy for Writing Committees.

*No financial benefit.
†Significant relationship.

ACC indicates American College of Cardiology; AMA, American Medical Association; FDA, U.S. Food and Drug Administration; NHLBI, National Heart, Lung, and Blood Institute; SCAI, Society for Cardiovascular Angiography and Interventions.

<table>
<thead>
<tr>
<th>Cindy L. Grines</th>
<th>Harper University Hospital—Vice President</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandeep Singh</td>
<td>Mayo Clinic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*Abbott Vascular
• Bristol Meyers Squibb
• Lilly USA
• Merck
• The Medicines Company
• Volcano*

<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership / Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
</table>
| Eric R. Bates | Content Reviewer—AHA and Content Reviewer—ACCF/AHA/SCAI PCI Guideline | University of Michigan Hospitals and Health Centers—Professor of Medicine | • AstraZeneca
• BMS
• Daiichi-Sankyo
• Eli Lilly
• Merck/Schering-Plough
• Sanofi-aventis | None | None | None | None | None |
| Ashequl M. Islam | Official Reviewer—SCAI | Baystate Medical Center—Program Director, Interventional Cardiology Fellowship | • Edwards Lifesciences
• Daiichi-Sankyo
• Eli Lilly | None | None | None | None | None |
| Hani Jneid | Official Reviewer—ACCF Task Force on Clinical Expert Consensus Documents | Baylor College of Medicine - MEDVAMC—Associate Professor of Medicine | None | None | None | None | None | None |
| Steven P. Marso | Official Reviewer—SCAI | Saint Luke’s Mid America Heart Institute; University of Missouri-Kansas City—Professor of Medicine | None | None | None | None | None | None | • Amylin*
• St. Jude Medical*
• Terumo Medical*
• The Medicines Company*
• Volcano Corporation* |

*Denotes company received financial support from SCAI, ACC, or AHA.
<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership / Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Mauri</td>
<td>Official Reviewer—AHA</td>
<td>Harvard Medical School—Associate Professor of Medicine; Brigham & Women’s Hospital</td>
<td>• Medtronic</td>
<td>None</td>
<td>None</td>
<td>• Abbott Vascular*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• St. Jude Medical</td>
<td></td>
<td></td>
<td>• Boston Scientific*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Bristol-Myers Squibb*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cordis Corporation*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Daiichi-Sankyo*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Eli Lilly*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Medtronic*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sanofi-aventis*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Srinivas Murali</td>
<td>Official Reviewer—ACC Board of Governors</td>
<td>Allegheny General Hospital—Director, Division of Cardiovascular Medicine</td>
<td>• Advisory Board</td>
<td>None</td>
<td>None</td>
<td>• Actelion</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Actelion</td>
<td></td>
<td></td>
<td>• Gilead Pharma</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Gilead Pharma</td>
<td></td>
<td></td>
<td>• St. Jude Medical*</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Barry Uretsky</td>
<td>Official Reviewer—SCAI</td>
<td>University of Arkansas for Medical Sciences—Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Howard Walpole</td>
<td>Official Reviewer—ACCF Board of Trustees</td>
<td>Okyanos Heart Institute—Chief Medical Officer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas M. Bashore</td>
<td>Content Reviewer—ACCF/AHA/SCAI Clinical Competence Statement on CIP</td>
<td>Duke University Medical Center—Professor of Medicine; Clinical Chief, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James A. Burke</td>
<td>Content Reviewer—ACCF Interventional Section Leadership Council</td>
<td>Lehigh Valley Heart Specialists—Associate Chief of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John G. Byrne</td>
<td>Content Reviewer—ACCF Interventional Section Leadership Council</td>
<td>Brigham & Women’s Hospital—Chief, Division of Cardiac Surgery; Harvard Medical School—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Employment</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership / Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Joaquin E. Cigarroa</td>
<td>Content Reviewer—ACCF Interventional Section Leadership Council and ACCF/AHA CABG Guideline</td>
<td>Oregon Health & Science University—Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Catheterization and Cardiovascular Intervention†</td>
<td>None</td>
</tr>
<tr>
<td>Frederick E. Grover</td>
<td>Content Reviewer—ACCF Surgeons Section Leadership Council</td>
<td>University of Colorado—Professor and Chair, Department of Surgery</td>
<td>• Somahlution†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Maureen B. Julien</td>
<td>Content Reviewer—ACCF Interventional Section Leadership Council</td>
<td>Hospital of the University of Pennsylvania—Nurse Practitioner</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Glenn N. Levine</td>
<td>Content Reviewer—ACCF/AHA/SCAI PCI Guideline and ACCF/AHA/SCAI Clinical Competence Statement on CIP</td>
<td>Baylor College of Medicine—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pasala S. Ravichandra n</td>
<td>Content Reviewer—ACCF Surgeons Section Leadership Council</td>
<td>Oregon Health & Science University—Associate Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sidney C. Smith, Jr.</td>
<td>Content Reviewer—ACCF Individual</td>
<td>Center for Cardiovascular Science and Medicine—Professor of Medicine; Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$10,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding conditions.
definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACCF/AHA, a person has a relevant relationship IF: a) The relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) The company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) The person or a member of the person’s household, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

*Significant relationship.
†No financial benefit.

ACCF indicates American College of Cardiology; AHA, American Heart Association; CABG, Coronary Artery Bypass Graft Surgery; CIP, Coronary Interventional Procedures; PCI, Percutaneous Coronary Intervention; SCAI, Society of Cardiovascular Angiography & Interventions.