2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines
This executive summary of the valvular heart disease guideline provides recommendations for clinicians to diagnose and manage valvular heart disease as well as supporting documentation to encourage their use.
Methods:
A comprehensive literature search was conducted from January 1, 2010, to March 1, 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, Cochrane, Agency for Healthcare Research and Quality Reports, and other selected database relevant to this guideline.
Structure:
Many recommendations from the earlier valvular heart disease guidelines have been updated with new evidence and provides newer options for diagnosis and treatment of valvular heart disease. This summary includes only the recommendations from the full guideline which focus on diagnostic work-up, the timing and choice of surgical and catheter interventions, and recommendations for medical therapy. The reader is referred to the full guideline for graphical flow charts, text, and tables with additional details about the rationale for and implementation of each recommendation, and the evidence tables detailing the data considered in developing these guidelines.
Top 10 Take-Home Messages
Disease stages in patients with valvular heart disease should be classified (Stages A, B, C, and D) on the basis of symptoms, valve anatomy, the severity of valve dysfunction, and the response of the ventricle and pulmonary circulation.
In the evaluation of a patient with valvular heart disease, history and physical examination findings should be correlated with the results of noninvasive testing (ie, ECG, chest x-ray, transthoracic echocardiogram). If there is discordance between the physical examination and initial noninvasive testing, consider further noninvasive (computed tomography, cardiac magnetic resonance imaging, stress testing) or invasive (transesophageal echocardiography, cardiac catheterization) testing to determine optimal treatment strategy.
For patients with valvular heart disease and atrial fibrillation (except for patients with rheumatic mitral stenosis or a mechanical prosthesis), the decision to use oral anticoagulation to prevent thromboembolic events, with either a vitamin K antagonist or a non–vitamin K antagonist anticoagulant, should be made in a shared decision-making process based on the CHA2DS2-VASc score. Patients with rheumatic mitral stenosis or a mechanical prosthesis and atrial fibrillation should receive oral anticoagulation with a vitamin K antagonist.
All patients with severe valvular heart disease being considered for valve intervention should be evaluated by a multidisciplinary team, with either referral to or consultation with a Primary or Comprehensive Valve Center.
Treatment of severe aortic stenosis with either a transcatheter or surgical valve prosthesis should be based primarily on symptoms or reduced ventricular systolic function. Earlier intervention may be considered if indicated by results of exercise testing, biomarkers, rapid progression, or the presence of very severe stenosis.
Indications for transcatheter aortic valve implantation are expanding as a result of multiple randomized trials of transcatheter aortic valve implantation atrioversus surgical aortic valve replacement. The choice of type of intervention for a patient with severe aortic stenosis should be a shared decision-making process that considers the lifetime risks and benefits associated with type of valve (mechanical versus bioprosthetic) and type of approach (transcatheter versus surgical).
Indications for intervention for valvular regurgitation are relief of symptoms and prevention of the irreversible long-term consequences of left ventricular volume overload. Thresholds for intervention now are lower than they were previously because of more durable treatment options and lower procedural risks.
A mitral transcatheter edge-to-edge repair is of benefit to patients with severely symptomatic primary mitral regurgitation who are at high or prohibitive risk for surgery, as well as to a select subset of patients with secondary mitral regurgitation who remain severely symptomatic despite guideline-directed management and therapy for heart failure.
Patients presenting with severe symptomatic isolated tricuspid regurgitation, commonly associated with device leads and atrial fibrillation, may benefit from surgical intervention to reduce symptoms and recurrent hospitalizations if done before the onset of severe right ventricular dysfunction or end-organ damage to the liver and kidney.
Bioprosthetic valve dysfunction may occur because of either degeneration of the valve leaflets or valve thrombosis. Catheter-based treatment for prosthetic valve dysfunction is reasonable in selected patients for bioprosthetic leaflet degeneration or paravalvular leak in the absence of active infection.
Purpose of the Executive Summary
This executive summary of the valvular heart disease (VHD) guideline provides a synopsis with algorithms to guide clinicians in the screening, diagnosis, and management of patients with VHD. Tables and figures that are mentioned in this executive summary, but are not included here, appear in the full guideline.1
The full guideline1 has been updated with new evidence and provides newer options for diagnosis and treatment of VHD. This summary includes only the recommendations from the full guideline which focus on diagnostic work-up, the timing and choice of surgical and catheter interventions, and recommendations for medical therapy. The reader is referred to the full guideline document1 for graphical flow charts, text, and tables with additional details about the rationale for and implementation of each recommendation, and the evidence tables detailing the data considered in developing these guidelines.
This full guideline1 will replace the 2014 guideline2 and the 2017 focused update.3 Some recommendations from the earlier VHD guidelines have been updated by new evidence or a better understanding of earlier evidence, whereas others that were outdated, irrelevant, or overlapping were deleted or modified. The overall goal was to provide the clinician with concise, evidence-based, contemporary recommendations with supporting data to encourage their use. Sections were divided into the following: 1) general principles, 2) aortic stenosis, 3) aortic regurgitation, 4) bicuspid aortic valve, 5) mitral stenosis, 6) mitral regurgitation, 7) tricuspid valve disease, 8) mixed valve disease, 9) prosthetic valves, 10) infective endocarditis, 11) pregnancy, 12) surgical considerations, and 13) noncardiac surgery.
Document Review and Approval
This document was reviewed by 2 official reviewers each nominated by both the ACC and the AHA, as well as content reviewers nominated by the ACC and AHA. Authors’ RWI information is published in Appendix 1 of the full guideline.1 Reviewers’ RWI information is published in Appendix 2 of the full guideline.1
Class of Recommendation and Level of Evidence
The Class of Recommendation (COR) indicates the strength of recommendation, encompassing the estimated magnitude and certainty of benefit in proportion to risk. The Level of Evidence (LOE) rates the quality of scientific evidence supporting the intervention on the basis of the type, quantity, and consistency of data from clinical trials and other sources (Table 2).4
Table 2. Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care (Updated May 2019)*
Table 2. Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care (Updated May 2019)*
2. GENERAL PRINCIPLES
2.4. Basic Principles of Medical Therapy
2.4.1. Secondary Prevention of Rheumatic Fever
Tables in this section are located in the full guideline.1
2.4.2. IE Prophylaxis
2.4.3. Anticoagulation for AF in Patients With VHD
2.5. Evaluation of Surgical and Interventional Risk
2.6. The Multidisciplinary Heart Valve Team and Heart Valve Centers
2.7. Management of Patients With VHD After Valve Intervention
2.7.4. Periodic Imaging After Valve Intervention
3. AORTIC STENOSIS
3.2. Aortic Stenosis
3.2.1. Diagnosis and Follow-Up
3.2.1.1. Diagnostic Testing: Initial Diagnosis
3.2.1.5. Diagnostic Testing: Exercise Testing
3.2.2. Medical Therapy
3.2.3. Timing of Intervention
3.2.4. Choice of Intervention
3.2.4.1. Choice of Mechanical Versus Bioprosthetic AVR
3.2.4.2. Choice of SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR Is Appropriate
4. Aortic Regurgitation
4.3. Chronic AR
4.3.1. Diagnosis of Chronic AR
4.3.2. Medical Therapy
4.3.3. Timing of Intervention
5. Bicuspid Aortic Valve
5.1. BAV and Associated Aortopathy
5.1.1. Diagnosis and Follow-up of BAV
5.1.1.1. Diagnostic Testing: Initial Diagnosis
5.1.1.2. Diagnostic Testing: Routine Follow-Up
5.1.2. Interventions for Patients With BAV
5.1.2.1. Intervention: Replacement of the Aorta
5.1.2.2. Intervention: Repair or Replacement of the Aortic Valve
6. MITRAL STENOSIS
6.2. Rheumatic MS
6.2.1. Diagnosis and Follow-Up of Rheumatic MS
6.2.1.1. Diagnostic Testing: Initial Diagnosis
6.2.1.5. Diagnostic Testing: Exercise Testing
6.2.2. Medical Therapy
6.2.3. Intervention
6.3. Nonrheumatic Calcific MS
7. Mitral Regurgitation
7.2. Chronic Primary MR
7.2.2. Diagnosis and Follow-Up of Chronic Primary MR
7.2.2.1. Diagnostic Testing: Initial Diagnosis
7.2.2.2. Diagnostic Testing: Changing Signs or Symptoms
7.2.2.3. Diagnostic Testing: Routine Follow-Up
7.2.2.5. Diagnostic Testing: Exercise Testing
7.2.3. Medical Therapy
7.2.4. Intervention
7.3. Chronic Secondary MR
7.3.2. Diagnosis of Chronic Secondary MR
7.3.3. Medical Therapy
7.3.4. Intervention
8. Tricuspid Valve Disease
8.2. Tricuspid Regurgitation
8.2.1. Diagnosis of TR
8.2.2. Medical Therapy
8.2.3. Timing of Intervention
10. Mixed Valve Disease
10.1. Diagnosis of Mixed VHD
10.2. Timing of Intervention for Mixed VHD
10.2.1. Intervention for Mixed AS and AR
11. Prosthetic Valves
11.1. Evaluation and Selection of Prosthetic Valves
11.1.1. Diagnosis and Follow-Up of Prosthetic Valves
11.1.2. Selection of Prosthetic Valve Type: Bioprosthetic Versus Mechanical Valve
11.2. Antithrombotic Therapy
11.3. Bridging Therapy
11.4. Excessive Anticoagulation and Serious Bleeding With Prosthetic Valves
11.5. Thromboembolic Events With Prosthetic Valves
11.6. Acute Mechanical Valve Thrombosis
11.6.1. Diagnosis of Acute Mechanical Valve Thrombosis
11.6.2. Intervention
11.7. Bioprosthetic Valve Thrombosis
11.7.1. Diagnosis of Bioprosthetic Valve Thrombosis
11.7.2. Medical Therapy
11.8. Prosthetic Valve Stenosis
11.8.1. Diagnosis of Prosthetic Valve Stenosis
11.8.2. Intervention for Prosthetic Valve Stenosis
11.9. Prosthetic Valve Regurgitation
11.9.1. Diagnosis of Prosthetic Valve Regurgitation
11.9.3. Intervention
12. Infective Endocarditis
12.2. Diagnosis of IE
Tables in this section are located in the full guideline.1
12.3. Medical Therapy
12.4. Intervention
13. Pregnancy and VHD
13.1. Initial Management of Women With VHD Before and During Pregnancy
13.1.1. Medical Therapy for Women With VHD Before and During Pregnancy
13.1.2. Intervention for Women With Native VHD Before and During Pregnancy
13.1.2.1. Pre-Pregnancy Intervention
13.1.2.2. During-Pregnancy Intervention
13.2. Prosthetic Valves in Pregnant Women
13.2.1. Initial Management
13.2.2. Anticoagulation for Pregnant Women With Mechanical Prosthetic Heart Valves
14. Surgical Considerations
14.1. Evaluation and Management of CAD in Patients With VHD
14.1.1. Management of CAD in Patients Undergoing TAVI
14.1.2. Management of CAD in Patients Undergoing Valve Surgery
14.2. Intervention for AF in Patients With VHD
15. Noncardiac Surgery in Patients With VHD
15.1. Diagnosis of Patients With VHD Undergoing Noncardiac Surgery
15.2. Management of the Symptomatic Patient
15.3. Management of the Asymptomatic Patient
ACC/AHA Joint Committee Members
Patrick T. O’Gara, MD, MACC, FAHA, Chair; Joshua A. Beckman, MD, MS, FAHA, Chair-Elect; Glenn N. Levine, MD, FACC, FAHA, Immediate Past Chair*; Sana M. Al-Khatib, MD, MHS, FACC, FAHA*; Anastasia Armbruster, PharmD, AACC; Kim K. Birtcher, PharmD, MS, AACC; Joaquin Ciggaroa, MD, FACC*; Anita Deswal, MD, MPH, FACC, FAHA; Dave L. Dixon, PharmD, FACC; Lee A. Fleisher, MD, FACC, FAHA*; Lisa de las Fuentes, MD, MS, FAHA, FASE; Federico Gentile, MD, FACC*; Zachary D. Goldberger, MD, MSc, FACC, FAHA; Bulent Gorenek, MD, FACC, FESC; Norrisa Haynes, MD, MPH; Adrian F. Hernandez, MD, MHS; Mark A. Hlatky, MD, FACC, FAHA*; José A. Joglar, MD, FACC, FAHA; W. Schuyler Jones, MD, FACC; Joseph E. Marine, MD, FACC*; Daniel Mark, MD, MPH, FACC, FAHA; Latha Palaniappan, MD, MS, FAHA, FACC; Mariann R. Piano, RN, PhD, FAHA; Erica S. Spatz, MD, MHS, FACC; Jacqueline Tamis-Holland, MD, FACC; Duminda N. Wijeysundera, MD, PhD*; Y. Joseph Woo, MD, FAHA, FACC
* Former Joint Committee member; current member during the writing effort.
Footnotes
*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 in the full guideline for detailed information.
†ACC/AHA Joint Committee on Clinical Practice Guidelines Liaison.
The American Heart Association requests that this document be cited as follows: Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C, O’Gara PT, Rigolin VH, Sundt TM 3rd, Thompson A, Toly C. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143:e35-e71. doi: 10.1161/CIR.0000000000000932
Developed in collaboration with and endorsed by the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons
ACC/AHA Joint Committee on Clinical Practice Guidelines Members, see page e54
This document was approved by the American College of Cardiology Clinical Policy Approval Committee in August 2020, the American Heart Association Science Advisory and Coordinating Committee in August 2020, and the American Heart Association Executive Committee in September 2020.
The expert peer review of AHA-commissioned documents (eg, scientific statements, clinical practice guidelines, systematic reviews) is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit https://professional.heart.org/statements. Select the “Guidelines & Statements” drop-down menu near the top of the webpage, then click “Publication Development.”
1. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation. 2021; 143:e000–e000.Google Scholar
2. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation. 2014; 129:e521–643.LinkGoogle Scholar
3. Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Circulation. 2017; 135:e1159–95.LinkGoogle Scholar
5. Gerber MA, Baltimore RS, Eaton CB, et al. Prevention of rheumatic fever and diagnosis and treatment of acute Streptococcal pharyngitis: a scientific statement from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young, the Interdisciplinary Council on Functional Genomics and Translational Biology, and the Interdisciplinary Council on Quality of Care and Outcomes Research.Circulation. 2009; 119:1541–51.LinkGoogle Scholar
6. Glenny A-M, Oliver R, Roberts GJ, et al. Antibiotics for the prophylaxis of bacterial endocarditis in dentistry.Cochrane Database Syst Rev. 2013CD003813.MedlineGoogle Scholar
7. Mougeot FKB, Saunders SE, Brennan MT, et al. Associations between bacteremia from oral sources and distant-site infections: tooth brushing versus single tooth extraction.Oral Surg Oral Med Oral Pathol Oral Radiol. 2015; 119:430–5.CrossrefMedlineGoogle Scholar
8. Sherman-Weber S, Axelrod P, Suh B, et al. Infective endocarditis following orthotopic heart transplantation: 10 cases and a review of the literature.Transpl Infect Dis. 2004; 6:165–70.CrossrefMedlineGoogle Scholar
9. Lockhart PB, Brennan MT, Sasser HC, et al. Bacteremia associated with toothbrushing and dental extraction.Circulation. 2008; 117:3118–25.LinkGoogle Scholar
10. Geist S-MRY, Fitzpatrick S, Geist JR. American Heart Association 2007 guidelines on prevention of infective endocarditis.J Mich Dent Assoc. 2007; 89:50–6.MedlineGoogle Scholar
11. Duval X, Alla F, Hoen B, et al. Estimated risk of endocarditis in adults with predisposing cardiac conditions undergoing dental procedures with or without antibiotic prophylaxis.Clin Infect Dis. 2006; 42:e102–7.CrossrefMedlineGoogle Scholar
13. Horstkotte D, Rosin H, Friedrichs W, et al. Contribution for choosing the optimal prophylaxis of bacterial endocarditis.Eur Heart J. 1987; 8:379–81.CrossrefGoogle Scholar
14. Strom BL, Abrutyn E, Berlin JA, et al. Dental and cardiac risk factors for infective endocarditis: a population-based, case-control study.Ann Intern Med. 1998; 129:761–9.CrossrefMedlineGoogle Scholar
15. Dajani AS, Taubert KA, Wilson W, et al. Prevention of bacterial endocarditis: recommendations by the American Heart Association.Circulation. 1997; 96:358–66.LinkGoogle Scholar
16. Guarner-Argente C, Shah P, Buchner A, et al. Use of antimicrobials for EUS-guided FNA of pancreatic cysts: a retrospective, comparative analysis.Gastrointest Endosc. 2011; 74:81–6.CrossrefMedlineGoogle Scholar
17. Pan K-L, Singer DE, Ovbiagele B, et al. Effects of non-vitamin K antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and valvular heart disease: a systematic review and meta-analysis.J Am Heart Assoc. 2017; 6:e005835.LinkGoogle Scholar
18. Lip GYH, Jensen M, Melgaard L, et al. Stroke and bleeding risk scores in patients with atrial fibrillation and valvular heart disease: evaluating “valvular heart disease” in a nationwide cohort study.Europace. 2019; 21:33–40.CrossrefMedlineGoogle Scholar
19. Vora AN, Dai D, Matsuoka R, et al. Incidence, management, and associated clinical outcomes of new-onset atrial fibrillation following transcatheter aortic valve replacement: an analysis from the STS/ACC TVT registry.JACC Cardiovasc Interv. 2018; 11:1746–56.CrossrefMedlineGoogle Scholar
20. Seeger J, Gonska B, Rodewald C, et al. Apixaban in patients with atrial fibrillation after transfemoral aortic valve replacement.JACC Cardiovasc Interv. 2017; 10:66–74.CrossrefMedlineGoogle Scholar
21. Jochheim D, Barbanti M, Capretti G, et al. Oral anticoagulant type and outcomes after transcatheter aortic valve replacement.JACC Cardiovasc Interv. 2019; 12:1566–76.CrossrefMedlineGoogle Scholar
22. Mangner N, Crusius L, Haussig S, et al. Continued versus interrupted oral anticoagulation during transfemoral transcatheter aortic valve implantation and impact of postoperative anticoagulant management on outcome in patients with atrial fibrillation.Am J Cardiol. 2019; 123:1134–41.CrossrefMedlineGoogle Scholar
23. Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus warfarin in patients with mechanical heart valves.N Engl J Med. 2013; 369:1206–14.CrossrefMedlineGoogle Scholar
24. Birkmeyer JD, Stukel TA, Siewers AE, et al. Surgeon volume and operative mortality in the United States.N Engl J Med. 2003; 349:2117–27.CrossrefMedlineGoogle Scholar
25. Patel HJ, Herbert MA, Drake DH, et al. Aortic valve replacement: using a statewide cardiac surgical database identifies a procedural volume hinge point.Ann Thorac Surg. 2013; 96:1560–5.CrossrefMedlineGoogle Scholar
26. Dewey TM, Herbert MA, Ryan WH, et al. Influence of surgeon volume on outcomes with aortic valve replacement.Ann Thorac Surg. 2012; 93:1107–12.CrossrefMedlineGoogle Scholar
27. McNeely C, Markwell S, Filson K, et al. Effect of hospital volume on prosthesis use and mortality in aortic valve operations in the elderly.Ann Thorac Surg. 2016; 101:585–90.CrossrefMedlineGoogle Scholar
28. Khera R, Pandey A, Koshy T, et al. Role of hospital volumes in identifying low-performing and high-performing aortic and aitral valve surgical centers in the United States.JAMA Cardiol. 2017; 2:1322–31.CrossrefMedlineGoogle Scholar
29. Carroll JD, Vemulapalli S, Dai D, et al. Procedural experience for transcatheter aortic valve replacement and relation to outcomes: the STS/ACC TVT registry.J Am Coll Cardiol. 2017; 70:29–41.CrossrefMedlineGoogle Scholar
30. Bolling SF, Li S, O’Brien SM, et al. Predictors of mitral valve repair: clinical and surgeon factors.Ann Thorac Surg. 2010; 90:1904–11.CrossrefMedlineGoogle Scholar
31. Chikwe J, Toyoda N, Anyanwu AC, et al. Relation of mitral valve surgery volume to repair rate, durability, and survival.J Am Coll Cardiol. 2017; 69:2397–406.CrossrefGoogle Scholar
32. Gammie JS, O’Brien SM, Griffith BP, et al. Influence of hospital procedural volume on care process and mortality for patients undergoing elective surgery for mitral regurgitation.Circulation. 2007; 115:881–7.LinkGoogle Scholar
33. Kilic A, Shah AS, Conte JV, et al. Operative outcomes in mitral valve surgery: combined effect of surgeon and hospital volume in a population-based analysis.J Thorac Cardiovasc Surg. 2013; 146:638–46.CrossrefMedlineGoogle Scholar
34. Vassileva CM, Boley T, Markwell S, et al. Impact of hospital annual mitral procedural volume on mitral valve repair rates and mortality.J Heart Valve Dis. 2012; 21:41–7.MedlineGoogle Scholar
35. Nishimura RA, O’Gara PT, Bavaria JE, et al. 2019 AATS/ACC/ASE/SCAI/STS expert consensus systems of care document: a proposal to optimize care for patients with valvular heart disease: a joint report of the American Association for Thoracic Surgery, American College of Cardiology, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons.J Am Coll Cardiol. 2019; 73:2609–35.CrossrefMedlineGoogle Scholar
36. Ando T, Adegbala O, Villablanca PA, et al. Failure to rescue, hospital volume, and in-hospital mortality after transcatheter aortic valve implantation.Am J Cardiol. 2018; 122:828–32.CrossrefMedlineGoogle Scholar
37. Edwards FH, Ferraris VA, Kurlansky PA, et al. Failure to rescue rates after coronary artery bypass grafting: an analysis from the Society of Thoracic Surgeons Adult Cardiac Surgery Database.Ann Thorac Surg. 2016; 102:458–64.CrossrefMedlineGoogle Scholar
38. Scali ST, Giles KA, Kubilis P, et al. Impact of hospital volume on patient safety indicators and failure to rescue following open aortic aneurysm repair.J Vasc Surg. 2020; 71:1135–46.e4.CrossrefMedlineGoogle Scholar
39. Ghaferi AA, Birkmeyer JD, Dimick JB. Hospital volume and failure to rescue with high-risk surgery.Med Care. 2011; 49:1076–81.CrossrefMedlineGoogle Scholar
40. Gonzalez AA, Dimick JB, Birkmeyer JD, et al. Understanding the volume-outcome effect in cardiovascular surgery: the role of failure to rescue.JAMA Surg. 2014; 149:119–23.CrossrefMedlineGoogle Scholar
41. Ward ST, Dimick JB, Zhang W, et al. Association between hospital staffing models and failure to rescue.Ann Surg. 2019; 270:91–4.CrossrefMedlineGoogle Scholar
42. Wakeam E, Asafu-Adjei D, Ashley SW, et al. The association of intensivists with failure-to-rescue rates in outlier hospitals: results of a national survey of intensive care unit organizational characteristics.J Crit Care. 2014; 29:930–5.CrossrefMedlineGoogle Scholar
43. Baumgartner H, Hung J, Bermejo J, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography.J Am Soc Echocardiogr. 2017; 30:372–92.CrossrefMedlineGoogle Scholar
44. Gardezi SKM, Myerson SG, Chambers J, et al. Cardiac auscultation poorly predicts the presence of valvular heart disease in asymptomatic primary care patients.Heart. 2018; 104:1832–5.CrossrefMedlineGoogle Scholar
45. Eleid MF, Michelena HI, Nkomo VT, et al. Causes of death and predictors of survival after aortic valve replacement in low flow vs. normal flow severe aortic stenosis with preserved ejection fraction.Eur Heart J Cardiovasc Imaging. 2015; 16:1270–5.CrossrefMedlineGoogle Scholar
46. Kadem L, Dumesnil JG, Rieu R, et al. Impact of systemic hypertension on the assessment of aortic stenosis.Heart. 2005; 91:354–61.CrossrefMedlineGoogle Scholar
47. Laskey WK, Kussmaul WGHypertension, aortic valve stenosis, and the aorta: more lessons from TAVR.J Am Coll Cardiol. 2015; 65:434–6.CrossrefMedlineGoogle Scholar
48. Yotti R, Bermejo J, Gutiérrez-Ibañes E, et al. Systemic vascular load in calcific degenerative aortic valve stenosis: insight from percutaneous valve replacement.J Am Coll Cardiol. 2015; 65:423–33.CrossrefMedlineGoogle Scholar
49. Lindman BR, Otto CM. Time to treat hypertension in patients with aortic stenosis.Circulation. 2013; 128:1281–3.LinkGoogle Scholar
50. Lin SS, Roger VL, Pascoe R, et al. Dobutamine stress Doppler hemodynamics in patients with aortic stenosis: feasibility, safety, and surgical correlations.Am Heart J. 1998; 136:1010–6.CrossrefMedlineGoogle Scholar
51. Monin JL, Monchi M, Gest V, et al. Aortic stenosis with severe left ventricular dysfunction and low transvalvular pressure gradients: risk stratification by low-dose dobutamine echocardiography.J Am Coll Cardiol. 2001; 37:2101–7.CrossrefMedlineGoogle Scholar
52. Clavel M-A, Fuchs C, Burwash IG, et al. Predictors of outcomes in low-flow, low-gradient aortic stenosis: results of the multicenter TOPAS Study.Circulation. 2008; 118:S234–42.LinkGoogle Scholar
53. Otto CM, Pearlman AS, Comess KA, et al. Determination of the stenotic aortic valve area in adults using Doppler echocardiography.J Am Coll Cardiol. 1986; 7:509–17.CrossrefMedlineGoogle Scholar
54. Oh JK, Taliercio CP, Holmes DR, et al. Prediction of the severity of aortic stenosis by Doppler aortic valve area determination: prospective Doppler-catheterization correlation in 100 patients.J Am Coll Cardiol. 1988; 11:1227–34.CrossrefMedlineGoogle Scholar
55. Jander N, Hochholzer W, Kaufmann BA, et al. Velocity ratio predicts outcomes in patients with low gradient severe aortic stenosis and preserved EF.Heart. 2014; 100:1946–53.CrossrefMedlineGoogle Scholar
56. Pawade T, Clavel M-A, Tribouilloy C, et al. Computed tomography aortic valve calcium scoring in patients with aortic stenosis.Circ Cardiovasc Imaging. 2018; 11:e007146.LinkGoogle Scholar
57. Rosenhek R, Binder T, Porenta G, et al. Predictors of outcome in severe, asymptomatic aortic stenosis.N Engl J Med. 2000; 343:611–7.CrossrefMedlineGoogle Scholar
58. Messika-Zeitoun D, Aubry M-C, Detaint D, et al. Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography.Circulation. 2004; 110:356–62.LinkGoogle Scholar
59. Cueff C, Serfaty J-M, Cimadevilla C, et al. Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction.Heart. 2011; 97:721–6.CrossrefMedlineGoogle Scholar
60. Clavel M-A, Pibarot P, Messika-Zeitoun D, et al. Impact of aortic valve calcification, as measured by MDCT, on survival in patients with aortic stenosis: results of an international registry study.J Am Coll Cardiol. 2014; 64:1202–13.CrossrefMedlineGoogle Scholar
61. Saeed S, Rajani R, Seifert R, et al. Exercise testing in patients with asymptomatic moderate or severe aortic stenosis.Heart. 2018; 104:1836–42.CrossrefMedlineGoogle Scholar
62. Das P, Rimington H, Chambers J. Exercise testing to stratify risk in aortic stenosis.Eur Heart J. 2005; 26:1309–13.CrossrefMedlineGoogle Scholar
63. Otto CM, Burwash IG, Legget ME, et al. Prospective study of asymptomatic valvular aortic stenosis: clinical, echocardiographic, and exercise predictors of outcome.Circulation. 1997; 95:2262–70.LinkGoogle Scholar
64. Maréchaux S, Hachicha Z, Bellouin A, et al. Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis.Eur Heart J. 2010; 31:1390–7.CrossrefMedlineGoogle Scholar
65. Atterhög JH, Jonsson B, Samuelsson R. Exercise testing: a prospective study of complication rates.Am Heart J. 1979; 98:572–9.CrossrefMedlineGoogle Scholar
66. Nazarzadeh M, Pinho-Gomes A-C, Smith Byrne K, et al. Systolic blood pressure and risk of valvular heart disease: a mendelian randomization study.JAMA Cardiol. 2019; 4:788–95.CrossrefMedlineGoogle Scholar
67. Rahimi K, Mohseni H, Kiran A, et al. Elevated blood pressure and risk of aortic valve disease: a cohort analysis of 5.4 million UK adults.Eur Heart J. 2018; 39:3596–603.CrossrefMedlineGoogle Scholar
68. Nielsen OW, Sajadieh A, Sabbah M, et al. Assessing optimal blood pressure in patients with asymptomatic aortic valve stenosis: the Simvastatin Ezetimibe in Aortic Stenosis study (SEAS)Circulation. 2016; 134:455–68.LinkGoogle Scholar
69. Rossebø AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis.N Engl J Med. 2008; 359:1343–56.CrossrefMedlineGoogle Scholar
70. Cowell SJ, Newby DE, Prescott RJ, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis.N Engl J Med. 2005; 352:2389–97.CrossrefMedlineGoogle Scholar
71. Chan KL, Teo K, Dumesnil JG, et al. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial.Circulation. 2010; 121:306–14.LinkGoogle Scholar
72. Ochiai T, Saito S, Yamanaka F, et al. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation.Heart. 2018; 104:644–51.CrossrefMedlineGoogle Scholar
73. Inohara T, Manandhar P, Kosinski AS, et al. Association of renin-angiotensin inhibitor treatment with mortality and heart failure readmission in patients with transcatheter aortic valve replacement.JAMA. 2018; 320:2231–41.CrossrefMedlineGoogle Scholar
74. Kapadia SR, Leon MB, Makkar RR, et al. 5-Year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial.Lancet. 2015; 385:2485–91.CrossrefMedlineGoogle Scholar
75. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.N Engl J Med. 2010; 363:1597–607.CrossrefMedlineGoogle Scholar
76. Makkar RR, Fontana GP, Jilaihawi H, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis.N Engl J Med. 2012; 366:1696–704.CrossrefMedlineGoogle Scholar
77. Otto CM, Pearlman AS. Doppler echocardiography in adults with symptomatic aortic stenosis: diagnostic utility and cost-effectiveness.Arch Intern Med. 1988; 148:2553–60.CrossrefMedlineGoogle Scholar
78. Turina J, Hess O, Sepulcri F, et al. Spontaneous course of aortic valve disease.Eur Heart J. 1987; 8:471–83.CrossrefMedlineGoogle Scholar
79. Kelly TA, Rothbart RM, Cooper CM, et al. Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis.Am J Cardiol. 1988; 61:123–30.CrossrefMedlineGoogle Scholar
80. Pellikka PA, Nishimura RA, Bailey KR, et al. The natural history of adults with asymptomatic, hemodynamically significant aortic stenosis.J Am Coll Cardiol. 1990; 15:1012–7.CrossrefMedlineGoogle Scholar
81. Dahl JS, Eleid MF, Michelena HI, et al. Effect of left ventricular ejection fraction on postoperative outcome in patients with severe aortic stenosis undergoing aortic valve replacement.Circ Cardiovasc Imaging. 2015; 8:e002917.LinkGoogle Scholar
82. Taniguchi T, Morimoto T, Shiomi H, et al. Prognostic impact of left ventricular ejection fraction in patients with severe aortic stenosis.JACC Cardiovasc Interv. 2018; 11:145–57.CrossrefMedlineGoogle Scholar
83. Ito S, Miranda WR, Nkomo VT, et al. Reduced left ventricular ejection fraction in patients with aortic stenosis.J Am Coll Cardiol. 2018; 71:1313–21.CrossrefMedlineGoogle Scholar
84. Bohbot Y, de Meester de Ravenstein C, Chadha G, et al. Relationship between left ventricular ejection fraction and mortality in asymptomatic and minimally symptomatic patients with severe aortic stenosis.JACC Cardiovasc Imaging. 2019; 12:38–48.CrossrefMedlineGoogle Scholar
85. Pellikka PA, Sarano ME, Nishimura RA, et al. Outcome of 622 adults with asymptomatic, hemodynamically significant aortic stenosis during prolonged follow-up.Circulation. 2005; 111:3290–5.LinkGoogle Scholar
86. Lancellotti P, Donal E, Magne J, et al. Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay.Heart. 2010; 96:1364–71.CrossrefMedlineGoogle Scholar
87. Kang D-H, Park S-J, Rim JH, et al. Early surgery versus conventional treatment in asymptomatic very severe aortic stenosis.Circulation. 2010; 121:1502–9.LinkGoogle Scholar
88. Tribouilloy C, Lévy F, Rusinaru D, et al. Outcome after aortic valve replacement for low-flow/low-gradient aortic stenosis without contractile reserve on dobutamine stress echocardiography.J Am Coll Cardiol. 2009; 53:1865–73.CrossrefMedlineGoogle Scholar
89. Herrmann HC, Pibarot P, Hueter I, et al. Predictors of mortality and outcomes of therapy in low-flow severe aortic stenosis: a Placement of Aortic Transcatheter Valves (PARTNER) trial analysis.Circulation. 2013; 127:2316–26.LinkGoogle Scholar
90. Anjan VY, Herrmann HC, Pibarot P, et al. Evaluation of flow after transcatheter aortic valve replacement in patients with low-flow aortic stenosis: a secondary analysis of the PARTNER randomized clinical trial.JAMA Cardiol. 2016; 1:584–92.CrossrefMedlineGoogle Scholar
91. Lopez-Marco A, Miller H, Youhana A, et al. Low-flow low-gradient aortic stenosis: surgical outcomes and mid-term results after isolated aortic valve replacement.Eur J Cardiothorac Surg. 2016; 49:1685–90.CrossrefMedlineGoogle Scholar
92. O’Sullivan CJ, Englberger L, Hosek N, et al. Clinical outcomes and revascularization strategies in patients with low-flow, low-gradient severe aortic valve stenosis according to the assigned treatment modality.JACC Cardiovasc Interv. 2015; 8:704–17.CrossrefMedlineGoogle Scholar
93. Nishimura RA, Grantham JA, Connolly HM, et al. Low-output, low-gradient aortic stenosis in patients with depressed left ventricular systolic function: the clinical utility of the dobutamine challenge in the catheterization laboratory.Circulation. 2002; 106:809–13.LinkGoogle Scholar
94. Monin J-L, Quéré J-P, Monchi M, et al. Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics.Circulation. 2003; 108:319–24.LinkGoogle Scholar
95. Fougères E, Tribouilloy C, Monchi M, et al. Outcomes of pseudo-severe aortic stenosis under conservative treatment.Eur Heart J. 2012; 33:2426–33.CrossrefMedlineGoogle Scholar
96. Eleid MF, Padang R, Al-Hijji M, et al. Hemodynamic response in low-flow low-gradient aortic stenosis with preserved ejection fraction after TAVR.J Am Coll Cardiol. 2019; 73:1731–2.CrossrefMedlineGoogle Scholar
97. Rusinaru D, Bohbot Y, Ringle A, et al. Impact of low stroke volume on mortality in patients with severe aortic stenosis and preserved left ventricular ejection fraction.Eur Heart J. 2018; 39:1992–9.CrossrefMedlineGoogle Scholar
98. Zheng Q, Djohan AH, Lim E, et al. Effects of aortic valve replacement on severe aortic stenosis and preserved systolic function: systematic review and network meta-analysis.Sci Rep. 2017; 7:5092.CrossrefMedlineGoogle Scholar
99. Saeed S, Mancia G, Rajani R, et al. Exercise treadmill testing in moderate or severe aortic stenosis: the left ventricular correlates of an exaggerated blood pressure rise.J Am Heart Assoc. 2018; 7:e010735.LinkGoogle Scholar
100. Kang D-H, Park S-J, Lee S-A, et al. Early surgery or conservative care for asymptomatic aortic stenosis.N Engl J Med. 2020; 382:111–9.CrossrefMedlineGoogle Scholar
101. Nakatsuma K, Taniguchi T, Morimoto T, et al. B-type natriuretic peptide in patients with asymptomatic severe aortic stenosis.Heart. 2019; 105:384–90.MedlineGoogle Scholar
102. Lancellotti P, Magne J, Dulgheru R, et al. Outcomes of patients with asymptomatic aortic stenosis followed up in heart valve clinics.JAMA Cardiol. 2018; 3:1060–8.CrossrefMedlineGoogle Scholar
103. Taniguchi T, Morimoto T, Shiomi H, et al. Sudden death in patients with severe aortic stenosis: observations from the CURRENT AS registry.J Am Heart Assoc. 2018; 7:e008397.LinkGoogle Scholar
104. Rosenhek R, Zilberszac R, Schemper M, et al. Natural history of very severe aortic stenosis.Circulation. 2010; 121:151–6.LinkGoogle Scholar
105. Bergler-Klein J, Klaar U, Heger M, et al. Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis.Circulation. 2004; 109:2302–8.LinkGoogle Scholar
106. Gerber IL, Stewart RAH, Legget ME, et al. Increased plasma natriuretic peptide levels reflect symptom onset in aortic stenosis.Circulation. 2003; 107:1884–90.LinkGoogle Scholar
107. Lim P, Monin JL, Monchi M, et al. Predictors of outcome in patients with severe aortic stenosis and normal left ventricular function: role of B-type natriuretic peptide.Eur Heart J. 2004; 25:2048–53.CrossrefMedlineGoogle Scholar
108. Taniguchi T, Morimoto T, Shiomi H, et al. Initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis.J Am Coll Cardiol. 2015; 66:2827–38.CrossrefMedlineGoogle Scholar
109. Nishimura S, Izumi C, Nishiga M, et al. Predictors of rapid progression and clinical outcome of asymptomatic severe aortic stenosis.Circ J. 2016; 80:1863–9.CrossrefMedlineGoogle Scholar
110. Goldstone AB, Chiu P, Baiocchi M, et al. Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement.N Engl J Med. 2017; 377:1847–57.CrossrefMedlineGoogle Scholar
111. Badhwar V, Ofenloch JC, Rovin JD, et al. Noninferiority of closely monitored mechanical valves to bioprostheses overshadowed by early mortality benefit in younger patients.Ann Thorac Surg. 2012; 93:748–53.CrossrefMedlineGoogle Scholar
112. Brown ML, Schaff HV, Lahr BD, et al. Aortic valve replacement in patients aged 50 to 70 years: improved outcome with mechanical versus biologic prostheses.J Thorac Cardiovasc Surg. 2008; 135:878–84.CrossrefMedlineGoogle Scholar
113. van Geldorp MWA, Eric Jamieson WR, Kappetein AP, et al. Patient outcome after aortic valve replacement with a mechanical or biological prosthesis: weighing lifetime anticoagulant-related event risk against reoperation risk.J Thorac Cardiovasc Surg. 2009; 137:881–6, 6e1-5.CrossrefMedlineGoogle Scholar
114. Kulik A, Bédard P, Lam B-K, et al. Mechanical versus bioprosthetic valve replacement in middle-aged patients.Eur J Cardiothorac Surg. 2006; 30:485–91.CrossrefMedlineGoogle Scholar
115. Glaser N, Jackson V, Holzmann MJ, et al. Aortic valve replacement with mechanical vs. biological prostheses in patients aged 50–69 years.Eur Heart J. 2016; 37:2658–67.CrossrefMedlineGoogle Scholar
116. Chikwe J, Chiang YP, Egorova NN, et al. Survival and outcomes following bioprosthetic vs mechanical mitral valve replacement in patients aged 50 to 69 years.JAMA. 2015; 313:1435–42.CrossrefMedlineGoogle Scholar
117. McClure RS, McGurk S, Cevasco M, et al. Late outcomes comparison of nonelderly patients with stented bioprosthetic and mechanical valves in the aortic position: a propensity-matched analysis.J Thorac Cardiovasc Surg. 2014; 148:1931–9.CrossrefMedlineGoogle Scholar
118. Chiang YP, Chikwe J, Moskowitz AJ, et al. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years.JAMA. 2014; 312:1323–9.CrossrefMedlineGoogle Scholar
119. Kaneko T, Aranki S, Javed Q, et al. Mechanical versus bioprosthetic mitral valve replacement in patients <65 years old.J Thorac Cardiovasc Surg. 2014; 147:117–26.CrossrefMedlineGoogle Scholar
120. Buratto E, Shi WY, Wynne R, et al. Improved survival after the Ross procedure compared with mechanical aortic valve replacement.J Am Coll Cardiol. 2018; 71:1337–44.CrossrefMedlineGoogle Scholar
121. El-Hamamsy I, Eryigit Z, Stevens L-M, et al. Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial.Lancet. 2010; 376:524–31.CrossrefMedlineGoogle Scholar
122. Martin E, Mohammadi S, Jacques F, et al. Clinical outcomes following the Ross procedure in adults: a 25-year longitudinal study.J Am Coll Cardiol. 2017; 70:1890–9.CrossrefMedlineGoogle Scholar
123. Siemieniuk RA, Agoritsas T, Manja V, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic stenosis at low and intermediate risk: systematic review and meta-analysis.BMJ. 2016; 354:i5130.CrossrefMedlineGoogle Scholar
124. Foroutan F, Guyatt GH, O’Brien K, et al. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies.BMJ. 2016; 354:i5065.CrossrefMedlineGoogle Scholar
125. Siontis GCM, Overtchouk P, Cahill TJ, et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis.Eur Heart J. 2019; 40:3143–53.CrossrefMedlineGoogle Scholar
126. Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis.N Engl J Med. 2014; 370:1790–8.CrossrefMedlineGoogle Scholar
127. Mack MJ, Leon MB, Smith CR, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial.Lancet. 2015; 385:2477–84.CrossrefMedlineGoogle Scholar
128. Deeb GM, Reardon MJ, Chetcuti S, et al. 3-Year outcomes in high-risk patients who underwent surgical or transcatheter aortic valve replacement.J Am Coll Cardiol. 2016; 67:2565–74.CrossrefMedlineGoogle Scholar
129. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.N Engl J Med. 2016; 374:1609–20.CrossrefMedlineGoogle Scholar
130. Thourani VH, Kodali S, Makkar RR, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis.Lancet. 2016; 387:2218–25.CrossrefMedlineGoogle Scholar
131. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients.N Engl J Med. 2019; 380:1695–705.CrossrefMedlineGoogle Scholar
132. Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients.N Engl J Med. 2019; 380:1706–15.CrossrefMedlineGoogle Scholar
133. Siontis KC, Killu AM. Silent and non-silent thromboembolic events after ventricular tachycardia ablation: modifiable risk with postprocedure anticoagulation?J Cardiovasc Electrophysiol. 2019; 30:1197–9.CrossrefMedlineGoogle Scholar
134. Popma JJ, Adams DH, Reardon MJ, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery.J Am Coll Cardiol. 2014; 63:1972–81.CrossrefMedlineGoogle Scholar
135. Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement.N Engl J Med. 2012; 366:1686–95.CrossrefMedlineGoogle Scholar
136. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance.J Am Soc Echocardiogr. 2017; 30:303–71.CrossrefMedlineGoogle Scholar
137. Detaint D, Messika-Zeitoun D, Maalouf J, et al. Quantitative echocardiographic determinants of clinical outcome in asymptomatic patients with aortic regurgitation: a prospective study.JACC Cardiovasc Imaging. 2008; 1:1–11.CrossrefMedlineGoogle Scholar
138. Pizarro R, Bazzino OO, Oberti PF, et al. Prospective validation of the prognostic usefulness of B-type natriuretic peptide in asymptomatic patients with chronic severe aortic regurgitation.J Am Coll Cardiol. 2011; 58:1705–14.CrossrefMedlineGoogle Scholar
139. Bonow RO, Picone AL, McIntosh CL, et al. Survival and functional results after valve replacement for aortic regurgitation from 1976 to 1983: impact of preoperative left ventricular function.Circulation. 1985; 72:1244–56.LinkGoogle Scholar
140. Cunha CL, Giuliani ER, Fuster V, et al. Preoperative M-mode echocardiography as a predictor of surgical results in chronic aortic insufficiency.J Thorac Cardiovasc Surg. 1980; 79:256–65.CrossrefMedlineGoogle Scholar
141. Bonow RO, Lakatos E, Maron BJ, et al. Serial long-term assessment of the natural history of asymptomatic patients with chronic aortic regurgitation and normal left ventricular systolic function.Circulation. 1991; 84:1625–35.LinkGoogle Scholar
142. Bonow RO, Rosing DR, McIntosh CL, et al. The natural history of asymptomatic patients with aortic regurgitation and normal left ventricular function.Circulation. 1983; 68:509–17.LinkGoogle Scholar
143. Borer JS, Hochreiter C, Herrold EM, et al. Prediction of indications for valve replacement among asymptomatic or minimally symptomatic patients with chronic aortic regurgitation and normal left ventricular performance.Circulation. 1998; 97:525–34.LinkGoogle Scholar
144. Ishii K, Hirota Y, Suwa M, et al. Natural history and left ventricular response in chronic aortic regurgitation.Am J Cardiol. 1996; 78:357–61.CrossrefMedlineGoogle Scholar
145. Scognamiglio R, Fasoli G, Dalla Volta S. Progression of myocardial dysfunction in asymptomatic patients with severe aortic insufficiency.Clin Cardiol. 1986; 9:151–6.CrossrefMedlineGoogle Scholar
146. Scognamiglio R, Rahimtoola SH, Fasoli G, et al. Nifedipine in asymptomatic patients with severe aortic regurgitation and normal left ventricular function.N Engl J Med. 1994; 331:689–94.CrossrefMedlineGoogle Scholar
147. Siemienczuk D, Greenberg B, Morris C, et al. Chronic aortic insufficiency: factors associated with progression to aortic valve replacement.Ann Intern Med. 1989; 110:587–92.CrossrefMedlineGoogle Scholar
148. Tornos MP, Olona M, Permanyer-Miralda G, et al. Clinical outcome of severe asymptomatic chronic aortic regurgitation: a long-term prospective follow-up study.Am Heart J. 1995; 130:333–9.CrossrefMedlineGoogle Scholar
149. Tarasoutchi F, Grinberg M, Spina GS, et al. Ten-year clinical laboratory follow-up after application of a symptom-based therapeutic strategy to patients with severe chronic aortic regurgitation of predominant rheumatic etiology.J Am Coll Cardiol. 2003; 41:1316–24.CrossrefMedlineGoogle Scholar
150. Saisho H, Arinaga K, Kikusaki S, et al. Long term results and predictors of left ventricular function recovery after aortic valve replacement for chronic aortic regurgitation.Ann Thorac Cardiovasc Surg. 2015; 21:388–95.CrossrefMedlineGoogle Scholar
151. Mentias A, Feng K, Alashi A, et al. Long-term outcomes in patients with aortic regurgitation and preserved left ventricular ejection fraction.J Am Coll Cardiol. 2016; 68:2144–53.CrossrefMedlineGoogle Scholar
152. Yang L-T, Michelena HI, Scott CG, et al. Outcomes in chronic hemodynamically significant aortic regurgitation and limitations of current guidelines.J Am Coll Cardiol. 2019; 73:1741–52.CrossrefMedlineGoogle Scholar
153. de Meester C, Gerber BL, Vancraeynest D, et al. Do guideline-based indications result in an outcome penalty for patients with severe aortic regurgitation?JACC Cardiovasc Imaging. 2019; 12:2126–38.CrossrefMedlineGoogle Scholar
154. Yang LT, Enriquez-Sarano M, Michelena HI, et al. Predictors of progression in patients with stage B aortic regurgitation.J Am Coll Cardiol. 2019; 74:2480–92.CrossrefMedlineGoogle Scholar
155. Cawley PJ, Hamilton-Craig C, Owens DS, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography.Circ Cardiovasc Imaging. 2013; 6:48–57.LinkGoogle Scholar
156. Cranney GB, Lotan CS, Dean L, et al. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging: validation by calibrated ventricular angiography.Circulation. 1990; 82:154–63.LinkGoogle Scholar
157. Dulce MC, Mostbeck GH, O’Sullivan M, et al. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging.Radiology. 1992; 185:235–40.CrossrefMedlineGoogle Scholar
158. Gelfand EV, Hughes S, Hauser TH, et al. Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography.J Cardiovasc Magn Reson. 2006; 8:503–7.CrossrefMedlineGoogle Scholar
159. Myerson SG, d’Arcy J, Mohiaddin R, et al. Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome.Circulation. 2012; 126:1452–60.LinkGoogle Scholar
160. Kammerlander AA, Wiesinger M, Duca F, et al. Diagnostic and prognostic utility of cardiac magnetic resonance imaging in aortic regurgitation.JACC Cardiovasc Imaging. 2019; 12:1474–83.CrossrefMedlineGoogle Scholar
161. Evangelista A, Tornos P, Sambola A, et al. Long-term vasodilator therapy in patients with severe aortic regurgitation.N Engl J Med. 2005; 353:1342–9.CrossrefMedlineGoogle Scholar
162. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Circulation. 2019; 140:e596–646.LinkGoogle Scholar
163. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America.Circulation. 2017; 136:e137–61.LinkGoogle Scholar
164. Bonow RO, Borer JS, Rosing DR, et al. Preoperative exercise capacity in symptomatic patients with aortic regurgitation as a predictor of postoperative left ventricular function and long-term prognosis.Circulation. 1980; 62:1280–90.LinkGoogle Scholar
165. Klodas E, Enriquez-Sarano M, Tajik AJ, et al. Optimizing timing of surgical correction in patients with severe aortic regurgitation: role of symptoms.J Am Coll Cardiol. 1997; 30:746–52.CrossrefMedlineGoogle Scholar
166. Chaliki HP, Mohty D, Avierinos J-F, et al. Outcomes after aortic valve replacement in patients with severe aortic regurgitation and markedly reduced left ventricular function.Circulation. 2002; 106:2687–93.LinkGoogle Scholar
167. Tornos P, Sambola A, Permanyer-Miralda G, et al. Long-term outcome of surgically treated aortic regurgitation: influence of guideline adherence toward early surgery.J Am Coll Cardiol. 2006; 47:1012–7.CrossrefMedlineGoogle Scholar
168. Bhudia SK, McCarthy PM, Kumpati GS, et al. Improved outcomes after aortic valve surgery for chronic aortic regurgitation with severe left ventricular dysfunction.J Am Coll Cardiol. 2007; 49:1465–71.CrossrefMedlineGoogle Scholar
169. Fiedler AG, Bhambhani V, Laikhter E, et al. Aortic valve replacement associated with survival in severe regurgitation and low ejection fraction.Heart. 2018; 104:835–40.CrossrefMedlineGoogle Scholar
170. Kaneko T, Ejiofor JI, Neely RC, et al. Aortic regurgitation with markedly reduced left ventricular function is not a contraindication for aortic valve replacement.Ann Thorac Surg. 2016; 102:41–7.CrossrefMedlineGoogle Scholar
171. Greves J, Rahimtoola SH, McAnulty JH, et al. Preoperative criteria predictive of late survival following valve replacement for severe aortic regurgitation.Am Heart J. 1981; 101:300–8.CrossrefMedlineGoogle Scholar
172. Forman R, Firth BG, Barnard MS. Prognostic significance of preoperative left ventricular ejection fraction and valve lesion in patients with aortic valve replacement.Am J Cardiol. 1980; 45:1120–5.CrossrefMedlineGoogle Scholar
173. Cormier B, Vahanian A, Luxereau P, et al. Should asymptomatic or mildly symptomatic aortic regurgitation be operated on?Z Kardiol. 1986; 75(suppl 2):141–5.MedlineGoogle Scholar
174. Klodas E, Enriquez-Sarano M, Tajik AJ, et al. Aortic regurgitation complicated by extreme left ventricular dilation: long-term outcome after surgical correction.J Am Coll Cardiol. 1996; 27:670–7.CrossrefMedlineGoogle Scholar
175. Kumpuris AG, Quinones MA, Waggoner AD, et al. Importance of preoperative hypertrophy, wall stress and end-systolic dimension as echocardiographic predictors of normalization of left ventricular dilatation after valve replacement in chronic aortic insufficiency.Am J Cardiol. 1982; 49:1091–100.CrossrefMedlineGoogle Scholar
176. Fioretti P, Roelandt J, Bos RJ, et al. Echocardiography in chronic aortic insufficiency: is valve replacement too late when left ventricular end-systolic dimension reaches 55 mm?Circulation. 1983; 67:216–21.LinkGoogle Scholar
177. Stone PH, Clark RD, Goldschlager N, et al. Determinants of prognosis of patients with aortic regurgitation who undergo aortic valve replacement.J Am Coll Cardiol. 1984; 3:1118–26.CrossrefMedlineGoogle Scholar
178. Zhang Z, Yang J, Yu Y, et al. Preoperative ejection fraction determines early recovery of left ventricular end-diastolic dimension after aortic valve replacement for chronic severe aortic regurgitation.J Surg Res. 2015; 196:49–55.CrossrefMedlineGoogle Scholar
179. Murashita T, Schaff HV, Suri RM, et al. Impact of left ventricular systolic function on outcome of correction of chronic severe aortic valve regurgitation: implications for timing of surgical intervention.Ann Thorac Surg. 2017; 103:1222–8.CrossrefMedlineGoogle Scholar
180. Wang Y, Jiang W, Liu J, et al. Early surgery versus conventional treatment for asymptomatic severe aortic regurgitation with normal ejection fraction and left ventricular dilatation.Eur J Cardiothorac Surg. 2017; 52:118–24.CrossrefMedlineGoogle Scholar
181. Sawaya FJ, Deutsch MA, Seiffert M, et al. Safety and efficacy of transcatheter aortic valve replacement in the treatment of pure aortic regurgitation in native valves and failing surgical bioprostheses: results from an International Registry Study.JACC Cardiovasc Interv. 2017; 10:1048–56.CrossrefMedlineGoogle Scholar
182. Roy DA, Schaefer U, Guetta V, et al. Transcatheter aortic valve implantation for pure severe native aortic valve regurgitation.J Am Coll Cardiol. 2013; 61:1577–84.CrossrefMedlineGoogle Scholar
183. Seiffert M, Bader R, Kappert U, et al. Initial German experience with transapical implantation of a second-generation transcatheter heart valve for the treatment of aortic regurgitation.JACC Cardiovasc Interv. 2014; 7:1168–74.CrossrefMedlineGoogle Scholar
184. Jiang J, Liu X, He Y, et al. Transcatheter aortic valve replacement for pure native aortic valve regurgitation: a systematic review.Cardiology. 2018; 141:132–40.CrossrefMedlineGoogle Scholar
185. Masri A, Svensson LG, Griffin BP, et al. Contemporary natural history of bicuspid aortic valve disease: a systematic review.Heart. 2017; 103:1323–30.CrossrefMedlineGoogle Scholar
186. Keane MG, Wiegers SE, Plappert T, et al. Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions.Circulation. 2000; 102:III35–9.LinkGoogle Scholar
187. Schaefer BM, Lewin MB, Stout KK, et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape.Heart. 2008; 94:1634–8.CrossrefMedlineGoogle Scholar
188. Goldstein SA, Evangelista A, Abbara S, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.J Am Soc Echocardiogr. 2015; 28:119–82.CrossrefMedlineGoogle Scholar
189. Kang J-W, Song HG, Yang DH, et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography.JACC Cardiovasc Imaging. 2013; 6:150–61.CrossrefMedlineGoogle Scholar
190. Kerstjens-Frederikse WS, Du Marchie Sarvaas GJ, Ruiter JS, et al. Left ventricular outflow tract obstruction: should cardiac screening be offered to first-degree relatives?Heart. 2011; 97:1228–32.CrossrefMedlineGoogle Scholar
191. Ferencik M, Pape LA. Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves.Am J Cardiol. 2003; 92:43–6.CrossrefMedlineGoogle Scholar
192. Michelena HI, Khanna AD, Mahoney D, et al. Incidence of aortic complications in patients with bicuspid aortic valves.JAMA. 2011; 306:1104–12.CrossrefMedlineGoogle Scholar
193. Davies RR, Goldstein LJ, Coady MA, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size.Ann Thorac Surg. 2002; 73:17–27.CrossrefMedlineGoogle Scholar
194. Masri A, Kalahasti V, Alkharabsheh S, et al. Characteristics and long-term outcomes of contemporary patients with bicuspid aortic valves.J Thorac Cardiovasc Surg. 2016; 151:1650–9 e1.CrossrefMedlineGoogle Scholar
195. McKellar SH, Michelena HI, Li Z, et al. Long-term risk of aortic events following aortic valve replacement in patients with bicuspid aortic valves.Am J Cardiol. 2010; 106:1626–33.CrossrefMedlineGoogle Scholar
196. Girdauskas E, Disha K, Borger MA, et al. Long-term prognosis of ascending aortic aneurysm after aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis.J Thorac Cardiovasc Surg. 2014; 147:276–82.CrossrefMedlineGoogle Scholar
197. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine.Circulation. 2010; 121:e266–369.LinkGoogle Scholar
198. Elefteriades JA. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks.Ann Thorac Surg. 2002; 74:S1877–80.CrossrefMedlineGoogle Scholar
199. Russo CF, Mazzetti S, Garatti A, et al. Aortic complications after bicuspid aortic valve replacement: long-term results.Ann Thorac Surg. 2002; 74:S1773–6.CrossrefMedlineGoogle Scholar
200. Borger MA, Preston M, Ivanov J, et al. Should the ascending aorta be replaced more frequently in patients with bicuspid aortic valve disease?J Thorac Cardiovasc Surg. 2004; 128:677–83.CrossrefMedlineGoogle Scholar
201. Svensson LG, Kim K-H, Blackstone EH, et al. Bicuspid aortic valve surgery with proactive ascending aorta repair.J Thorac Cardiovasc Surg. 2011; 142:622–9, 9.9.e1-3.CrossrefMedlineGoogle Scholar
202. Beckerman Z, Kayatta MO, McPherson L, et al. Bicuspid aortic valve repair in the setting of severe aortic insufficiency.J Vis Surg. 2018; 4:101.CrossrefMedlineGoogle Scholar
203. David TE, Feindel CM, David CM, et al. A quarter of a century of experience with aortic valve-sparing operations.J Thorac Cardiovasc Surg. 2014; 148:872–9.CrossrefMedlineGoogle Scholar
204. Davies RR, Kaple RK, Mandapati D, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve.Ann Thorac Surg. 2007; 83:1338–44.CrossrefMedlineGoogle Scholar
205. Ergin MA, Spielvogel D, Apaydin A, et al. Surgical treatment of the dilated ascending aorta: when and how?Ann Thorac Surg. 1999; 67:1834–9.CrossrefMedlineGoogle Scholar
206. Svensson LG, Kim K-H, Lytle BW, et al. Relationship of aortic cross-sectional area to height ratio and the risk of aortic dissection in patients with bicuspid aortic valves.J Thorac Cardiovasc Surg. 2003; 126:892–3.CrossrefMedlineGoogle Scholar
207. Yasuda H, Nakatani S, Stugaard M, et al. Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve.Circulation. 2003; 108(suppl 1):II291–4.LinkGoogle Scholar
208. Park CB, Greason KL, Suri RM, et al. Fate of nonreplaced sinuses of Valsalva in bicuspid aortic valve disease.J Thorac Cardiovasc Surg. 2011; 142:278–84.CrossrefMedlineGoogle Scholar
209. Schneider U, Feldner SK, Hofmann C, et al. Two decades of experience with root remodeling and valve repair for bicuspid aortic valves.J Thorac Cardiovasc Surg. 2017; 153:S65–71.CrossrefMedlineGoogle Scholar
210. Takagi H, Hari Y, Kawai N, et al. Meta-analysis of transcatheter aortic valve implantation for bicuspid versus tricuspid aortic valves.J Cardiol. 2019; 74:40–8.CrossrefMedlineGoogle Scholar
211. Kanjanahattakij N, Horn B, Vutthikraivit W, et al. Comparing outcomes after transcatheter aortic valve replacement in patients with stenotic bicuspid and tricuspid aortic valve: a systematic review and meta-analysis.Clin Cardiol. 2018; 41:896–902.CrossrefMedlineGoogle Scholar
212. Makkar RR, Yoon S-H, Leon MB, et al. Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke.JAMA. 2019; 321:2193–202.CrossrefMedlineGoogle Scholar
213. Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice.Eur J Echocardiogr. 2009; 10:1–25.CrossrefMedlineGoogle Scholar
214. Nunes MCP, Tan TC, Elmariah S, et al. The echo score revisited: impact of incorporating commissural morphology and leaflet displacement to the prediction of outcome for patients undergoing percutaneous mitral valvuloplasty.Circulation. 2014; 129:886–95.LinkGoogle Scholar
215. Cannan CR, Nishimura RA, Reeder GS, et al. Echocardiographic assessment of commissural calcium: a simple predictor of outcome after percutaneous mitral balloon valvotomy.J Am Coll Cardiol. 1997; 29:175–80.CrossrefMedlineGoogle Scholar
216. Ellis K, Ziada KM, Vivekananthan D, et al. Transthoracic echocardiographic predictors of left atrial appendage thrombus.Am J Cardiol. 2006; 97:421–5.CrossrefMedlineGoogle Scholar
217. Kronzon I, Tunick PA, Glassman E, et al. Transesophageal echocardiography to detect atrial clots in candidates for percutaneous transseptal mitral balloon valvuloplasty.J Am Coll Cardiol. 1990; 16:1320–2.CrossrefMedlineGoogle Scholar
218. Tessier P, Mercier LA, Burelle D, et al. Results of percutaneous mitral commissurotomy in patients with a left atrial appendage thrombus detected by transesophageal echocardiography.J Am Soc Echocardiogr. 1994; 7:394–9.CrossrefMedlineGoogle Scholar
219. Cheitlin MD. Stress echocardiography in mitral stenosis: when is it useful?J Am Coll Cardiol. 2004; 43:402–4.CrossrefMedlineGoogle Scholar
220. Cheriex EC, Pieters FA, Janssen JH, et al. Value of exercise Doppler-echocardiography in patients with mitral stenosis.Int J Cardiol. 1994; 45:219–26.CrossrefMedlineGoogle Scholar
221. Grimaldi A, Olivotto I, Figini F, et al. Dynamic assessment of “valvular reserve capacity” in patients with rheumatic mitral stenosis.Eur Heart J Cardiovasc Imaging. 2012; 13:476–82.CrossrefMedlineGoogle Scholar
222. Suh WM, Kern MJ. Addressing the hemodynamic dilemma of combined mitral and aortic stenosis.Catheter Cardiovasc Interv. 2008; 71:944–9.CrossrefMedlineGoogle Scholar
223. Reis G, Motta MS, Barbosa MM, et al. Dobutamine stress echocardiography for noninvasive assessment and risk stratification of patients with rheumatic mitral stenosis.J Am Coll Cardiol. 2004; 43:393–401.CrossrefMedlineGoogle Scholar
224. Kim JY, Kim S-H, Myong J-P, et al. Outcomes of direct oral anticoagulants in patients with mitral stenosis.J Am Coll Cardiol. 2019; 73:1123–31.CrossrefMedlineGoogle Scholar
225. Giugliano RP, O’Gara PT. DOACs in Patients with mitral stenosis and atrial fibrillation: time for a randomized clinical trial.J Am Coll Cardiol. 2019; 73:1132–4.CrossrefMedlineGoogle Scholar
226. Olesen KH. The natural history of 271 patients with mitral stenosis under medical treatment.Br Heart J. 1962; 24:349–57.CrossrefMedlineGoogle Scholar
227. Rowe JC, Bland EF, Sprague HB, et al. The course of mitral stenosis without surgery: ten- and twenty-year perspectives.Ann Intern Med. 1960; 52:741–9.CrossrefMedlineGoogle Scholar
228. Szekely P. Systemic embolism and anticoagulant prophylaxis in rheumatic heart disease.Br Med J. 1964; 1:1209–12.CrossrefMedlineGoogle Scholar
229. Wilson JK, Greenwood WF. The natural history of mitral stenosis.Can Med Assoc J. 1954; 71:323–31.MedlineGoogle Scholar
230. Omran H, Rang B, Schmidt H, et al. Incidence of left atrial thrombi in patients in sinus rhythm and with a recent neurologic deficit.Am Heart J. 2000; 140:658–62.CrossrefMedlineGoogle Scholar
231. Yusuf J, Goyal M, Mukhopadhyay S, et al. Effect of heart rate control on coagulation status in patients of rheumatic mitral stenosis with atrial fibrillation: a pilot study.Indian Heart J. 2015; 67(suppl 2):S40–5.CrossrefMedlineGoogle Scholar
232. Rigolin VH, Higgenbotham MB, Robiolio PA, et al. Effect of inadequate cardiac output reserve on exercise tolerance in patients with moderate mitral stenosis.Am J Cardiol. 1997; 80:236–40.CrossrefMedlineGoogle Scholar
233. Laufer-Perl M, Gura Y, Shimiaie J, et al. Mechanisms of effort intolerance in patients with rheumatic mitral stenosis: combined echocardiography and cardiopulmonary stress protocol.JACC Cardiovasc Imaging. 2017; 10:622–33.CrossrefMedlineGoogle Scholar
234. Kitzman DW, Upadhya B, Zhao D. New concepts in an old disease: exercise intolerance in moderate mitral stenosis.JACC Cardiovasc Imaging. 2017; 10:634–6.CrossrefMedlineGoogle Scholar
235. Saggu DK, Narain VS, Dwivedi SK, et al. Effect of ivabradine on heart rate and duration of exercise in patients with mild-to-moderate mitral stenosis: a randomized comparison with metoprolol.J Cardiovasc Pharmacol. 2015; 65:552–4.CrossrefMedlineGoogle Scholar
236. Parakh N, Chaturvedi V, Kurian S, et al. Effect of ivabradine vs atenolol on heart rate and effort tolerance in patients with mild to moderate mitral stenosis and normal sinus rhythm.J Card Fail. 2012; 18:282–8.CrossrefMedlineGoogle Scholar
237. Agrawal V, Kumar N, Lohiya B, et al. Metoprolol vs ivabradine in patients with mitral stenosis in sinus rhythm.Int J Cardiol. 2016; 221:562–6.CrossrefMedlineGoogle Scholar
238. Rajesh GN, Sajeer K, Sajeev CG, et al. A comparative study of ivabradine and atenolol in patients with moderate mitral stenosis in sinus rhythm.Indian Heart J. 2016; 68:311–5.CrossrefMedlineGoogle Scholar
239. Bouleti C, Iung B, Laouénan C, et al. Late results of percutaneous mitral commissurotomy up to 20 years: development and validation of a risk score predicting late functional results from a series of 912 patients.Circulation. 2012; 125:2119–27.LinkGoogle Scholar
240. Meneguz-Moreno RA, Costa JR, Gomes NL, et al. Very long term follow-up after percutaneous balloon mitral valvuloplasty.JACC Cardiovasc Interv. 2018; 11:1945–52.CrossrefMedlineGoogle Scholar
241. Rifaie O, Abdel-Dayem MK, Ramzy A, et al. Percutaneous mitral valvotomy versus closed surgical commissurotomy: up to 15 years of follow-up of a prospective randomized study.J Cardiol. 2009; 53:28–34.CrossrefMedlineGoogle Scholar
242. Cardoso LF, Grinberg M, Pomerantzeff PMA, et al. Comparison of open commissurotomy and balloon valvuloplasty in mitral stenosis: a five-year follow-up.Arq Bras Cardiol. 2004; 83:248–52.MedlineGoogle Scholar
243. Cotrufo M, Renzulli A, Ismeno G, et al. Percutaneous mitral commissurotomy versus open mitral commissurotomy: a comparative study.Eur J Cardiothorac Surg. 1999; 15:646–51.CrossrefMedlineGoogle Scholar
244. Song J-K, Kim M-J, Yun S-C, et al. Long-term outcomes of percutaneous mitral balloon valvuloplasty versus open cardiac surgery.J Thorac Cardiovasc Surg. 2010; 139:103–10.CrossrefMedlineGoogle Scholar
245. Arora R, Nair M, Kalra GS, et al. Immediate and long-term results of balloon and surgical closed mitral valvotomy: a randomized comparative study.Am Heart J. 1993; 125:1091–4.CrossrefMedlineGoogle Scholar
246. Ben FM, Ayari M, Maatouk F, et al. Percutaneous balloon versus surgical closed and open mitral commissurotomy: seven-year follow-up results of a randomized trial.Circulation. 1998; 97:245–50.LinkGoogle Scholar
247. Patel JJ, Shama D, Mitha AS, et al. Balloon valvuloplasty versus closed commissurotomy for pliable mitral stenosis: a prospective hemodynamic study.J Am Coll Cardiol. 1991; 18:1318–22.CrossrefMedlineGoogle Scholar
248. Reyes VP, Raju BS, Wynne J, et al. Percutaneous balloon valvuloplasty compared with open surgical commissurotomy for mitral stenosis.N Engl J Med. 1994; 331:961–7.CrossrefMedlineGoogle Scholar
249. Turi ZG, Reyes VP, Raju BS, et al. Percutaneous balloon versus surgical closed commissurotomy for mitral stenosis: a prospective, randomized trial.Circulation. 1991; 83:1179–85.LinkGoogle Scholar
250. Reichart DT, Sodian R, Zenker R, et al. Long-term (≤ 50 years) results of patients after mitral valve commissurotomy: a single-center experience.J Thorac Cardiovasc Surg. 2012; 143:S96–8.CrossrefMedlineGoogle Scholar
251. Yang B, DeBenedictus C, Watt T, et al. The impact of concomitant pulmonary hypertension on early and late outcomes following surgery for mitral stenosis.J Thorac Cardiovasc Surg. 2016; 152:394–400.e1.CrossrefMedlineGoogle Scholar
252. Demirkan B, Guray Y, Guray U, et al. The acute effect of percutaneous mitral balloon valvuloplasty on atrial electromechanical delay and P-wave dispersion in patients with mitral stenosis.Herz. 2013; 38:210–5.CrossrefMedlineGoogle Scholar
253. Aviles RJ, Nishimura RA, Pellikka PA, et al. Utility of stress Doppler echocardiography in patients undergoing percutaneous mitral balloon valvotomy.J Am Soc Echocardiogr. 2001; 14:676–81.CrossrefMedlineGoogle Scholar
254. Bouleti C, Iung B, Himbert D, et al. Relationship between valve calcification and long-term results of percutaneous mitral commissurotomy for rheumatic mitral stenosis.Circ Cardiovasc Interv. 2014; 7:381–9.LinkGoogle Scholar
254a. Apostolakis EE, Baikoussis NG. Methods of estimation of mitral valve regurgitation for the cardiac surgeon. J Cardiothorac Surg. 2009;4:34.Google Scholar
255. Abramowitz Y, Jilaihawi H, Chakravarty T, et al. Mitral annulus calcification.J Am Coll Cardiol. 2015; 66:1934–41.CrossrefMedlineGoogle Scholar
256. Sud K, Agarwal S, Parashar A, et al. Degenerative mitral stenosis: unmet need for percutaneous interventions.Circulation. 2016; 133:1594–604.LinkGoogle Scholar
257. Bertrand PB, Mihos CG, Yucel E. Mitral annular calcification and calcific mitral stenosis: therapeutic challenges and considerations.Curr Treat Options Cardiovasc Med. 2019; 21:19.CrossrefMedlineGoogle Scholar
258. Bargiggia GS, Tronconi L, Sahn DJ, et al. A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice.Circulation. 1991; 84:1481–9.LinkGoogle Scholar
259. Recusani F, Bargiggia GS, Yoganathan AP, et al. A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice: an in vitro study.Circulation. 1991; 83:594–604.LinkGoogle Scholar
260. Tribouilloy C, Shen WF, Quere JP, et al. Assessment of severity of mitral regurgitation by measuring regurgitant jet width at its origin with transesophageal Doppler color flow imaging.Circulation. 1992; 85:1248–53.LinkGoogle Scholar
261. Tribouilloy C, Grigioni F, Avierinos JF, et al. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets: a long-term follow-up multicenter study.J Am Coll Cardiol. 2009; 54:1961–8.CrossrefMedlineGoogle Scholar
262. Enriquez-Sarano M, Avierinos J-F, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation.N Engl J Med. 2005; 352:875–83.CrossrefMedlineGoogle Scholar
263. Ozdogan O, Yuksel A, Gurgun C, et al. Evaluation of the severity of mitral regurgitation by the use of signal void in magnetic resonance imaging.Echocardiography. 2009; 26:1127–35.CrossrefMedlineGoogle Scholar
264. Pflugfelder PW, Sechtem UP, White RD, et al. Noninvasive evaluation of mitral regurgitation by analysis of left atrial signal loss in cine magnetic resonance.Am Heart J. 1989; 117:1113–9.CrossrefMedlineGoogle Scholar
265. Myerson SG, d’Arcy J, Christiansen JP, et al. Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification.Circulation. 2016; 133:2287–96.LinkGoogle Scholar
266. Dahm M, Iversen S, Schmid FX, et al. Intraoperative evaluation of reconstruction of the atrioventricular valves by transesophageal echocardiography.Thorac Cardiovasc Surg. 1987; 35Spec No 2140–2.CrossrefMedlineGoogle Scholar
267. Saiki Y, Kasegawa H, Kawase M, et al. Intraoperative TEE during mitral valve repair: does it predict early and late postoperative mitral valve dysfunction?Ann Thorac Surg. 1998; 66:1277–81.CrossrefMedlineGoogle Scholar
268. Antoine C, Benfari G, Michelena HI, et al. Clinical outcome of degenerative mitral regurgitation: critical importance of echocardiographic quantitative assessment in routine practice.Circulation. 2018; 138:1317–26.LinkGoogle Scholar
269. Tribouilloy CM, Enriquez-Sarano M, Schaff HV, et al. Impact of preoperative symptoms on survival after surgical correction of organic mitral regurgitation: rationale for optimizing surgical indications.Circulation. 1999; 99:400–5.LinkGoogle Scholar
270. Zilberszac R, Heinze G, Binder T, et al. Long-term outcome of active surveillance in severe but asymptomatic primary mitral regurgitation.JACC Cardiovasc Imaging. 2018; 11:1213–21.CrossrefMedlineGoogle Scholar
271. Ghoreishi M, Evans CF, DeFilippi CR, et al. Pulmonary hypertension adversely affects short- and long-term survival after mitral valve operation for mitral regurgitation: implications for timing of surgery.J Thorac Cardiovasc Surg. 2011; 142:1439–52.CrossrefMedlineGoogle Scholar
272. Enriquez-Sarano M, Tajik AJ, Schaff HV, et al. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation.Circulation. 1994; 90:830–7.LinkGoogle Scholar
273. Kang D-H, Kim JH, Rim JH, et al. Comparison of early surgery versus conventional treatment in asymptomatic severe mitral regurgitation.Circulation. 2009; 119:797–804.LinkGoogle Scholar
274. Bonow RO. Chronic mitral regurgitation and aortic regurgitation: have indications for surgery changed?J Am Coll Cardiol. 2013; 61:693–701.CrossrefMedlineGoogle Scholar
275. Rosenhek R, Rader F, Klaar U, et al. Outcome of watchful waiting in asymptomatic severe mitral regurgitation.Circulation. 2006; 113:2238–44.LinkGoogle Scholar
276. Grigioni F, Tribouilloy C, Avierinos JF, et al. Outcomes in mitral regurgitation due to flail leaflets: a multicenter European study.JACC Cardiovasc Imaging. 2008; 1:133–41.CrossrefMedlineGoogle Scholar
277. Kang D-H, Park S-J, Sun BJ, et al. Early surgery versus conventional treatment for asymptomatic severe mitral regurgitation: a propensity analysis.J Am Coll Cardiol. 2014; 63:2398–407.CrossrefMedlineGoogle Scholar
278. Rosen SE, Borer JS, Hochreiter C, et al. Natural history of the asymptomatic/minimally symptomatic patient with severe mitral regurgitation secondary to mitral valve prolapse and normal right and left ventricular performance.Am J Cardiol. 1994; 74:374–80.CrossrefMedlineGoogle Scholar
279. Quiñones MA, Douglas PS, Foster E, et al; American College of Cardiology/American Heart Association clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians—American Society of Internal Medicine Task Force on Clinical Competence. Developed in collaboration with the American Society of Echocardiography, the Society of Cardiovascular Anesthesiologists, and the Society of Pediatric Echocardiography.Circulation. 2003; 107:1068–89.MedlineGoogle Scholar
280. Detaint D, Messika-Zeitoun D, Avierinos J-F, et al. B-type natriuretic peptide in organic mitral regurgitation: determinants and impact on outcome.Circulation. 2005; 111:2391–7.LinkGoogle Scholar
281. Sutton TM, Stewart RAH, Gerber IL, et al. Plasma natriuretic peptide levels increase with symptoms and severity of mitral regurgitation.J Am Coll Cardiol. 2003; 41:2280–7.CrossrefMedlineGoogle Scholar
282. Pizarro R, Bazzino OO, Oberti PF, et al. Prospective validation of the prognostic usefulness of brain natriuretic peptide in asymptomatic patients with chronic severe mitral regurgitation.J Am Coll Cardiol. 2009; 54:1099–106.CrossrefMedlineGoogle Scholar
283. Alashi A, Mentias A, Patel K, et al. Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery.Circ Cardiovasc Imaging. 2016; 9:e004451.LinkGoogle Scholar
284. Klaar U, Gabriel H, Bergler-Klein J, et al. Prognostic value of serial B-type natriuretic peptide measurement in asymptomatic organic mitral regurgitation.Eur J Heart Fail. 2011; 13:163–9.CrossrefMedlineGoogle Scholar
285. Mentias A, Patel K, Patel H, et al. Prognostic utility of brain natriuretic peptide in asymptomatic patients with significant mitral regurgitation and preserved left ventricular ejection fraction.Am J Cardiol. 2016; 117:258–63.CrossrefMedlineGoogle Scholar
286. Magne J, Mahjoub H, Pierard LA, et al. Prognostic importance of brain natriuretic peptide and left ventricular longitudinal function in asymptomatic degenerative mitral regurgitation.Heart. 2012; 98:584–91.CrossrefMedlineGoogle Scholar
287. Hiemstra YL, Tomsic A, van Wijngaarden SE, et al. Prognostic value of global longitudinal strain and etiology after surgery for primary mitral regurgitation.JACC Cardiovasc Imaging. 2020; 13:577–85.CrossrefMedlineGoogle Scholar
288. Clavel M-A, Tribouilloy C, Vanoverschelde J-L, et al. Association of B-type natriuretic peptide with survival in patients with degenerative mitral regurgitation.J Am Coll Cardiol. 2016; 68:1297–307.CrossrefMedlineGoogle Scholar
289. Kim HM, Cho G-Y, Hwang I-C, et al. Myocardial strain in prediction of outcomes after surgery for severe mitral regurgitation.JACC Cardiovasc Imaging. 2018; 11:1235–44.CrossrefMedlineGoogle Scholar
290. Tischler MD, Battle RW, Ashikaga T, et al. Effects of exercise on left ventricular performance determined by echocardiography in chronic, severe mitral regurgitation secondary to mitral valve prolapse.Am J Cardiol. 1996; 77:397–402.CrossrefMedlineGoogle Scholar
291. Tischler MD, Battle RW, Saha M, et al. Observations suggesting a high incidence of exercise-induced severe mitral regurgitation in patients with mild rheumatic mitral valve disease at rest.J Am Coll Cardiol. 1995; 25:128–33.CrossrefMedlineGoogle Scholar
292. Magne J, Lancellotti P, Piérard LA. Exercise-induced changes in degenerative mitral regurgitation.J Am Coll Cardiol. 2010; 56:300–9.CrossrefMedlineGoogle Scholar
294. Ahmed MI, Aban I, Lloyd SG, et al. A randomized controlled phase IIb trial of beta(1)-receptor blockade for chronic degenerative mitral regurgitation.J Am Coll Cardiol. 2012; 60:833–8.CrossrefMedlineGoogle Scholar
295. Nemoto S, Hamawaki M, De Freitas G, et al. Differential effects of the angiotensin-converting enzyme inhibitor lisinopril versus the beta-adrenergic receptor blocker atenolol on hemodynamics and left ventricular contractile function in experimental mitral regurgitation.J Am Coll Cardiol. 2002; 40:149–54.CrossrefMedlineGoogle Scholar
296. Varadarajan P, Joshi N, Appel D, et al. Effect of beta-blocker therapy on survival in patients with severe mitral regurgitation and normal left ventricular ejection fraction.Am J Cardiol. 2008; 102:611–5.CrossrefMedlineGoogle Scholar
297. Dujardin KS, Enriquez-Sarano M, Bailey KR, et al. Effect of losartan on degree of mitral regurgitation quantified by echocardiography.Am J Cardiol. 2001; 87:570–6.CrossrefMedlineGoogle Scholar
298. Harris KM, Aeppli DM, Carey CF. Effects of angiotensin-converting enzyme inhibition on mitral regurgitation severity, left ventricular size, and functional capacity.Am Heart J. 2005; 150:1106.CrossrefMedlineGoogle Scholar
299. Kizilbash AM, Willett DL, Brickner ME, et al. Effects of afterload reduction on vena contracta width in mitral regurgitation.J Am Coll Cardiol. 1998; 32:427–31.CrossrefMedlineGoogle Scholar
300. Tischler MD, Rowan M, LeWinter MM. Effect of enalapril therapy on left ventricular mass and volumes in asymptomatic chronic, severe mitral regurgitation secondary to mitral valve prolapse.Am J Cardiol. 1998; 82:242–5.CrossrefMedlineGoogle Scholar
301. Wisenbaugh T, Sinovich V, Dullabh A, et al. Six month pilot study of captopril for mildly symptomatic, severe isolated mitral and isolated aortic regurgitation.J Heart Valve Dis. 1994; 3:197–204.MedlineGoogle Scholar
302. Gillinov AM, Mihaljevic T, Blackstone EH, et al. Should patients with severe degenerative mitral regurgitation delay surgery until symptoms develop?Ann Thorac Surg. 2010; 90:481–8.CrossrefMedlineGoogle Scholar
303. Schuler G, Peterson KL, Johnson A, et al. Temporal response of left ventricular performance to mitral valve surgery.Circulation. 1979; 59:1218–31.LinkGoogle Scholar
304. Crawford MH, Souchek J, Oprian CA, et al. Determinants of survival and left ventricular performance after mitral valve replacement: Department of Veterans Affairs Cooperative Study on Valvular Heart Disease.Circulation. 1990; 81:1173–81.LinkGoogle Scholar
305. Borow KM, Green LH, Mann T, et al. End-systolic volume as a predictor of postoperative left ventricular performance in volume overload from valvular regurgitation.Am J Med. 1980; 68:655–63.CrossrefMedlineGoogle Scholar
306. Suri RM, Clavel M-A, Schaff HV, et al. Effect of recurrent mitral regurgitation following degenerative mitral valve repair: long-term analysis of competing outcomes.J Am Coll Cardiol. 2016; 67:488–98.CrossrefMedlineGoogle Scholar
307. Vassileva CM, Mishkel G, McNeely C, et al. Long-term survival of patients undergoing mitral valve repair and replacement: a longitudinal analysis of Medicare fee-for-service beneficiaries.Circulation. 2013; 127:1870–6.LinkGoogle Scholar
308. Suri RM, Vanoverschelde J-L, Grigioni F, et al. Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets.JAMA. 2013; 310:609–16.CrossrefMedlineGoogle Scholar
309. Lazam S, Vanoverschelde J-L, Tribouilloy C, et al. Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation: analysis of a large, prospective, multicenter, international registry.Circulation. 2017; 135:410–22.LinkGoogle Scholar
310. Tribouilloy C, Rusinaru D, Szymanski C, et al. Predicting left ventricular dysfunction after valve repair for mitral regurgitation due to leaflet prolapse: additive value of left ventricular end-systolic dimension to ejection fraction.Eur J Echocardiogr. 2011; 12:702–10.CrossrefMedlineGoogle Scholar
311. Feldman T, Kar S, Elmariah S, et al. Randomized comparison of percutaneous repair and surgery for mitral regurgitation: 5-year results of EVEREST II.J Am Coll Cardiol. 2015; 66:2844–54.CrossrefMedlineGoogle Scholar
312. Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation.N Engl J Med. 2011; 364:1395–406.CrossrefMedlineGoogle Scholar
313. Dillon J, Yakub MA, Kong PK, et al. Comparative long-term results of mitral valve repair in adults with chronic rheumatic disease and degenerative disease: is repair for “burnt-out” rheumatic disease still inferior to repair for degenerative disease in the current era?J Thorac Cardiovasc Surg. 2015; 149:771–7.CrossrefMedlineGoogle Scholar
314. Gillinov AM, Blackstone EH, Alaulaqi A, et al. Outcomes after repair of the anterior mitral leaflet for degenerative disease.Ann Thorac Surg. 2008; 86:708–17.CrossrefMedlineGoogle Scholar
315. Weiner MM, Hofer I, Lin H-M, et al. Relationship among surgical volume, repair quality, and perioperative outcomes for repair of mitral insufficiency in a mitral valve reference center.J Thorac Cardiovasc Surg. 2014; 148:2021–6.CrossrefMedlineGoogle Scholar
316. Enriquez-Sarano M, Suri RM, Clavel M-A, et al. Is there an outcome penalty linked to guideline-based indications for valvular surgery? Early and long-term analysis of patients with organic mitral regurgitation.J Thorac Cardiovasc Surg. 2015; 150:50–8.CrossrefMedlineGoogle Scholar
317. Grigioni F, Enriquez-Sarano M, Zehr KJ, et al. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment.Circulation. 2001; 103:1759–64.LinkGoogle Scholar
318. Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure.N Engl J Med. 2018; 379:2307–18.CrossrefMedlineGoogle Scholar
319. Tommaso CL, Fullerton DA, Feldman T, et al. SCAI/AATS/ACC/STS operator and institutional requirements for transcatheter valve repair and replacement: part II: mitral valve.J Am Coll Cardiol. 2014; 64:1515–26.CrossrefMedlineGoogle Scholar
320. Maisano F, Franzen O, Baldus S, et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe.J Am Coll Cardiol. 2013; 62:1052–61.CrossrefMedlineGoogle Scholar
321. Mauri L, Foster E, Glower DD, et al. 4-Year results of a randomized controlled trial of percutaneous repair versus surgery for mitral regurgitation.J Am Coll Cardiol. 2013; 62:317–28.CrossrefMedlineGoogle Scholar
322. Bax JJ, Debonnaire P, Lancellotti P, et al. Transcatheter interventions for mitral regurgitation: multimodality imaging for patient selection and procedural guidance.JACC Cardiovasc Imaging. 2019; 12:2029–48.CrossrefMedlineGoogle Scholar
323. Zoghbi WA, Asch FM, Bruce C, et al. Guidelines for the evaluation of valvular regurgitation after percutaneous valve repair or replacement: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance.J Am Soc Echocardiogr. 2019; 32:431–75.CrossrefMedlineGoogle Scholar
324. Silvestry FE, Rodriguez LL, Herrmann HC, et al. Echocardiographic guidance and assessment of percutaneous repair for mitral regurgitation with the Evalve MitraClip: lessons learned from EVEREST I.J Am Soc Echocardiogr. 2007; 20:1131–40.CrossrefMedlineGoogle Scholar
325. Nickenig G, Estevez-Loureiro R, Franzen O, et al. Percutaneous mitral valve edge-to-edge repair: in-hospital results and 1-year follow-up of 628 patients of the 2011–2012 Pilot European Sentinel Registry.J Am Coll Cardiol. 2014; 64:875–84.CrossrefMedlineGoogle Scholar
326. Sorajja P, Vemulapalli S, Feldman T, et al. Outcomes with transcatheter mitral valve repair in the United States: an STS/ACC TVT registry report.J Am Coll Cardiol. 2017; 70:2315–27.CrossrefMedlineGoogle Scholar
327. Solvd Investigators , Yusuf S, Pitt B, et al. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions.N Engl J Med. 1992; 327:685–91.CrossrefMedlineGoogle Scholar
328. Eriksson SV, Eneroth P, Kjekshus J, et al. Neuroendocrine activation in relation to left ventricular function in chronic severe congestive heart failure: a subgroup analysis from the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS)Clin Cardiol. 1994; 17:603–6.CrossrefMedlineGoogle Scholar
329. Granger CB, McMurray JJV, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial.Lancet. 2003; 362:772–6.CrossrefMedlineGoogle Scholar
330. Krum H, Roecker EB, Mohacsi P, et al. Effects of initiating carvedilol in patients with severe chronic heart failure: results from the COPERNICUS Study.JAMA. 2003; 289:712–8.CrossrefMedlineGoogle Scholar
331. Pitt B, Zannad F, Remme WJ, et al; for the Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure.N Engl J Med. 1999; 341:709–17.CrossrefMedlineGoogle Scholar
332. St John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure.Circulation. 2003; 107:1985–90.LinkGoogle Scholar
333. van Bommel RJ, Marsan NA, Delgado V, et al. Cardiac resynchronization therapy as a therapeutic option in patients with moderate-severe functional mitral regurgitation and high operative risk.Circulation. 2011; 124:912–9.LinkGoogle Scholar
334. Kang D-H, Park S-J, Shin S-H, et al. Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation.Circulation. 2019; 139:1354–65.LinkGoogle Scholar
335. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.Circulation. 2013; 128:e240–327.LinkGoogle Scholar
336. Mullens W, Martens P. Sacubitril/valsartan to reduce secondary mitral regurgitation.Circulation. 2019; 139:1366–70.LinkGoogle Scholar
337. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure.N Engl J Med. 2002; 346:1845–53.CrossrefMedlineGoogle Scholar
338. Obadia J-F, Messika-Zeitoun D, Leurent G, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation.N Engl J Med. 2018; 379:2297–306.CrossrefMedlineGoogle Scholar
339. Ailawadi G, Lim DS, Mack MJ, et al. One-year outcomes after MitraClip for functional mitral regurgitation.Circulation. 2019; 139:37–47.LinkGoogle Scholar
340. Arnold SV, Chinnakondepall i KM, Spertus JA, et al. Health status after transcatheter mitral-valve repair in heart failure and secondary mitral regurgitation: COAPT trial.J Am Coll Cardiol. 2019; 73:2123–32.CrossrefMedlineGoogle Scholar
341. Grayburn PA, Sannino A, Packer M. Proportionate and disproportionate functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT trials.JACC Cardiovasc Imaging. 2019; 12:353–62.CrossrefMedlineGoogle Scholar
342. Nishimura RA, Bonow RO. Percutaneous repair of secondary mitral regurgitation: a tale of two trials.N Engl J Med. 2018; 379:2374–6.CrossrefMedlineGoogle Scholar
343. Swaans MJ, Bakker ALM, Alipour A, et al. Survival of transcatheter mitral valve repair compared with surgical and conservative treatment in high-surgical-risk patients.JACC Cardiovasc Interv. 2014; 7:875–81.CrossrefMedlineGoogle Scholar
344. Auricchio A, Schillinger W, Meyer S, et al. Correction of mitral regurgitation in nonresponders to cardiac resynchronization therapy by MitraClip improves symptoms and promotes reverse remodeling.J Am Coll Cardiol. 2011; 58:2183–9.CrossrefMedlineGoogle Scholar
345. Deja MA, Grayburn PA, Sun B, et al. Influence of mitral regurgitation repair on survival in the surgical treatment for ischemic heart failure trial.Circulation. 2012; 125:2639–48.LinkGoogle Scholar
346. Di Mauro M, Di Giammarco G, Vitolla G, et al. Impact of no-to-moderate mitral regurgitation on late results after isolated coronary artery bypass grafting in patients with ischemic cardiomyopathy.Ann Thorac Surg. 2006; 81:2128–34.CrossrefMedlineGoogle Scholar
347. Bax JJ, Braun J, Somer ST, et al. Restrictive annuloplasty and coronary revascularization in ischemic mitral regurgitation results in reverse left ventricular remodeling.Circulation. 2004; 110:II103–8.LinkGoogle Scholar
348. Fattouch K, Guccione F, Sampognaro R, et al. POINT: Efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation: a randomized trial.J Thorac Cardiovasc Surg. 2009; 138:278–85.CrossrefMedlineGoogle Scholar
349. Samad Z, Shaw LK, Phelan M, et al. Management and outcomes in patients with moderate or severe functional mitral regurgitation and severe left ventricular dysfunction.Eur Heart J. 2015; 36:2733–41.CrossrefMedlineGoogle Scholar
350. Nishimura RA, Vahanian A, Eleid MF, et al. Mitral valve disease: current management and future challenges.Lancet. 2016; 387:1324–34.CrossrefMedlineGoogle Scholar
351. Deja MA, Grayburn PA, Sun B, et al. Influence of mitral regurgitation repair on survival in the surgical treatment for ischemic heart failure trial.Circulation. 2012; 125:2639–48.LinkGoogle Scholar
352. Rankin JS, Grau-Sepulveda M, Shahian DM, et al. The impact of mitral disease etiology on operative mortality after mitral valve operations.Ann Thorac Surg. 2018; 106:1406–13.CrossrefMedlineGoogle Scholar
353. Gammie JS, Chikwe J, Badhwar V, et al. Isolated mitral valve surgery: the Society of Thoracic Surgeons Adult Cardiac Surgery Database Analysis.Ann Thorac Surg. 2018; 106:716–27.CrossrefMedlineGoogle Scholar
354. Kihara T, Gillinov AM, Takasaki K, et al. Mitral regurgitation associated with mitral annular dilation in patients with lone atrial fibrillation: an echocardiographic study.Echocardiography. 2009; 26:885–9.CrossrefMedlineGoogle Scholar
355. Vohra HA, Whistance RN, Magan A, et al. Mitral valve repair for severe mitral regurgitation secondary to lone atrial fibrillation.Eur J Cardiothorac Surg. 2012; 42:634–7.CrossrefMedlineGoogle Scholar
356. Takahashi Y, Abe Y, Sasaki Y, et al. Mitral valve repair for atrial functional mitral regurgitation in patients with chronic atrial fibrillation.Interact Cardiovasc Thorac Surg. 2015; 21:163–8.CrossrefMedlineGoogle Scholar
357. Goldstein D, Moskowitz AJ, Gelijns AC, et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation.N Engl J Med. 2016; 374:344–53.CrossrefMedlineGoogle Scholar
358. Wu AH, Aaronson KD, Bolling SF, et al. Impact of mitral valve annuloplasty on mortality risk in patients with mitral regurgitation and left ventricular systolic dysfunction.J Am Coll Cardiol. 2005; 45:381–7.CrossrefMedlineGoogle Scholar
359. Lancellotti P, Gérard PL, Piérard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation.Eur Heart J. 2005; 26:1528–32.CrossrefMedlineGoogle Scholar
360. Trichon BH, Felker GM, Shaw LK, et al. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure.Am J Cardiol. 2003; 91:538–43.CrossrefMedlineGoogle Scholar
361. Rossi A, Dini FL, Faggiano P, et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure: a quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy.Heart. 2011; 97:1675–80.CrossrefMedlineGoogle Scholar
362. Mihaljevic T, Lam B-K, Rajeswaran J, et al. Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation.J Am Coll Cardiol. 2007; 49:2191–201.CrossrefMedlineGoogle Scholar
363. Harris KM, Sundt TM, Aeppli D, et al. Can late survival of patients with moderate ischemic mitral regurgitation be impacted by intervention on the valve?Ann Thorac Surg. 2002; 74:1468–75.CrossrefMedlineGoogle Scholar
364. Benedetto U, Melina G, Roscitano A, et al. Does combined mitral valve surgery improve survival when compared to revascularization alone in patients with ischemic mitral regurgitation? A meta-analysis on 2479 patients.J Cardiovasc Med (Hagerstown). 2009; 10:109–14.CrossrefMedlineGoogle Scholar
365. Cohn LH, Rizzo RJ, Adams DH, et al. The effect of pathophysiology on the surgical treatment of ischemic mitral regurgitation: operative and late risks of repair versus replacement.Eur J Cardiothorac Surg. 1995; 9:568–74.CrossrefMedlineGoogle Scholar
366. Chan KMJ, Punjabi PP, Flather M, et al. Coronary artery bypass surgery with or without mitral valve annuloplasty in moderate functional ischemic mitral regurgitation: final results of the Randomized Ischemic Mitral Evaluation (RIME) trial.Circulation. 2012; 126:2502–10.LinkGoogle Scholar
367. Acker MA, Parides MK, Perrault LP, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation.N Engl J Med. 2014; 370:23–32.CrossrefMedlineGoogle Scholar
368. Sugimoto T, Okada M, Ozaki N, et al. Long-term evaluation of treatment for functional tricuspid regurgitation with regurgitant volume: characteristic differences based on primary cardiac lesion.J Thorac Cardiovasc Surg. 1999; 117:463–71.CrossrefMedlineGoogle Scholar
369. Fukuda S, Gillinov AM, McCarthy PM, et al. Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty.Circulation. 2006; 114:I582–I7.LinkGoogle Scholar
370. Ling LF, Obuchowski NA, Rodriguez L, et al. Accuracy and interobserver concordance of echocardiographic assessment of right ventricular size and systolic function: a quality control exercise.J Am Soc Echocardiogr. 2012; 25:709–13.CrossrefMedlineGoogle Scholar
371. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography.J Am Soc Echocardiogr. 2010; 23:685–713.CrossrefMedlineGoogle Scholar
372. Beygui F, Furber A, Delépine S, et al. Routine breath-hold gradient echo MRI-derived right ventricular mass, volumes and function: accuracy, reproducibility and coherence study.Int J Cardiovasc Imaging. 2004; 20:509–16.CrossrefMedlineGoogle Scholar
373. Caudron J, Fares J, Vivier P-H, et al. Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease.Eur Radiol. 2011; 21:2111–20.CrossrefMedlineGoogle Scholar
374. Maceira AM, Prasad SK, Khan M, et al. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance.Eur Heart J. 2006; 27:2879–88.CrossrefMedlineGoogle Scholar
375. Navia JL, Brozzi NA, Klein AL, et al. Moderate tricuspid regurgitation with left-sided degenerative heart valve disease: to repair or not to repair?Ann Thorac Surg. 2012; 93:59–67.CrossrefMedlineGoogle Scholar
376. Nesser HJ, Tkalec W, Patel AR, et al. Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography.Echocardiography. 2006; 23:666–80.CrossrefMedlineGoogle Scholar
377. Pavlicek M, Wahl A, Rutz T, et al. Right ventricular systolic function assessment: rank of echocardiographic methods vs. cardiac magnetic resonance imaging.Eur J Echocardiogr. 2011; 12:871–80.CrossrefMedlineGoogle Scholar
378. Speiser U, Hirschberger M, Pilz G, et al. Tricuspid annular plane systolic excursion assessed using MRI for semi-quantification of right ventricular ejection fraction. Br J Radiol. 2012; 85:e716–21.CrossrefMedlineGoogle Scholar
379. Magne J, Girerd N, Sénéchal M, et al. Mitral repair versus replacement for ischemic mitral regurgitation: comparison of short-term and long-term survival.Circulation. 2009; 120:S104–11.LinkGoogle Scholar
380. Lorusso R, Gelsomino S, Vizzardi E, et al. Mitral valve repair or replacement for ischemic mitral regurgitation? The Italian Study on the Treatment of Ischemic Mitral Regurgitation (ISTIMIR)J Thorac Cardiovasc Surg. 2013; 145:128–39.CrossrefMedlineGoogle Scholar
381. McGee EC, Gillinov AM, Blackstone EH, et al. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation.J Thorac Cardiovasc Surg. 2004; 128:916–24.CrossrefMedlineGoogle Scholar
382. Miller DC. Ischemic mitral regurgitation redux: to repair or to replace?J Thorac Cardiovasc Surg. 2001; 122:1059–62.CrossrefMedlineGoogle Scholar
383. Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation: part 2: mitral and tricuspid regurgitation (native valve disease)Eur J Echocardiogr. 2010; 11:307–32.CrossrefMedlineGoogle Scholar
384. Nishimura RA, Carabello BA. Hemodynamics in the cardiac catheterization laboratory of the 21st century.Circulation. 2012; 125:2138–50.LinkGoogle Scholar
385. Hahn RT. Finding concordance in discord: the value of discordant invasive and echocardiographic pulmonary artery pressure measurements with severe tricuspid regurgitation.Eur Heart J. 2020;CrossrefGoogle Scholar
386. Lurz P, Orban M, Besler C, et al. Clinical characteristics, diagnosis, and risk stratification of pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter tricuspid valve repair.Eur Heart J. 2020; 41:2785–95.CrossrefMedlineGoogle Scholar
387. Antoniou T, Koletsis EN, Prokakis C, et al. Hemodynamic effects of combination therapy with inhaled nitric oxide and iloprost in patients with pulmonary hypertension and right ventricular dysfunction after high-risk cardiac surgery.J Cardiothorac Vasc Anesth. 2013; 27:459–66.CrossrefMedlineGoogle Scholar
388. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association. Developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association.Circulation. 2009; 119:2250–94.LinkGoogle Scholar
389. Staab ME, Nishimura RA, Dearani JA. Isolated tricuspid valve surgery for severe tricuspid regurgitation following prior left heart valve surgery: analysis of outcome in 34 patients.J Heart Valve Dis. 1999; 8:567–74.MedlineGoogle Scholar
390. Vassileva CM, Shabosky J, Boley T, et al. Tricuspid valve surgery: the past 10 years from the Nationwide Inpatient Sample (NIS) database.J Thorac Cardiovasc Surg. 2012; 143:1043–9.CrossrefMedlineGoogle Scholar
391. Dreyfus GD, Corbi PJ, Chan KMJ, et al. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair?Ann Thorac Surg. 2005; 79:127–32.CrossrefMedlineGoogle Scholar
392. Benedetto U, Melina G, Angeloni E, et al. Prophylactic tricuspid annuloplasty in patients with dilated tricuspid annulus undergoing mitral valve surgery.J Thorac Cardiovasc Surg. 2012; 143:632–8.CrossrefMedlineGoogle Scholar
393. Van de Veire NR, Braun J, Delgado V, et al. Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair.J Thorac Cardiovasc Surg. 2011; 141:1431–9.CrossrefMedlineGoogle Scholar
394. Calafiore AM, Gallina S, Iacò AL, et al. Mitral valve surgery for functional mitral regurgitation: should moderate-or-more tricuspid regurgitation be treated? A propensity score analysis.Ann Thorac Surg. 2009; 87:698–703.CrossrefMedlineGoogle Scholar
395. Chan V, Burwash IG, Lam B-K, et al. Clinical and echocardiographic impact of functional tricuspid regurgitation repair at the time of mitral valve replacement.Ann Thorac Surg. 2009; 88:1209–15.CrossrefMedlineGoogle Scholar
396. Kim JB, Yoo DG, Kim GS, et al. Mild-to-moderate functional tricuspid regurgitation in patients undergoing valve replacement for rheumatic mitral disease: the influence of tricuspid valve repair on clinical and echocardiographic outcomes.Heart. 2012; 98:24–30.CrossrefMedlineGoogle Scholar
397. Yilmaz O, Suri RM, Dearani JA, et al. Functional tricuspid regurgitation at the time of mitral valve repair for degenerative leaflet prolapse: the case for a selective approach.J Thorac Cardiovasc Surg. 2011; 142:608–13.CrossrefMedlineGoogle Scholar
398. Hamandi M, Smith RL, Ryan WH, et al. Outcomes of isolated tricuspid valve surgery have improved in the modern era.Ann Thorac Surg. 2019; 108:11–5.CrossrefMedlineGoogle Scholar
399. Kim Y-J, Kwon D-A, Kim H-K, et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation.Circulation. 2009; 120:1672–8.LinkGoogle Scholar
400. Messika-Zeitoun D, Thomson H, Bellamy M, et al. Medical and surgical outcome of tricuspid regurgitation caused by flail leaflets.J Thorac Cardiovasc Surg. 2004; 128:296–302.CrossrefMedlineGoogle Scholar
401. Møller JE, Pellikka PA, Bernheim AM, et al. Prognosis of carcinoid heart disease: analysis of 200 cases over two decades.Circulation. 2005; 112:3320–7.LinkGoogle Scholar
402. Kadri AN, Menon V, Sammour YM, et al. Outcomes of patients with severe tricuspid regurgitation and congestive heart failure.Heart. 2019; 105:1813–7.CrossrefMedlineGoogle Scholar
403. Lee J-W, Song J-M, Park JP, et al. Long-term prognosis of isolated significant tricuspid regurgitation.Circ J. 2010; 74:375–80.CrossrefMedlineGoogle Scholar
404. Axtell AL, Bhambhani V, Moonsamy P, et al. Surgery does not improve survival in patients with isolated severe tricuspid regurgitation.J Am Coll Cardiol. 2019; 74:715–25.CrossrefMedlineGoogle Scholar
406. Kim JB, Jung S-H, Choo SJ, et al. Clinical and echocardiographic outcomes after surgery for severe isolated tricuspid regurgitation.J Thorac Cardiovasc Surg. 2013; 146:278–84.CrossrefMedlineGoogle Scholar
408. Zilberszac R, Gabriel H, Schemper M, et al. Outcome of combined stenotic and regurgitant aortic valve disease.J Am Coll Cardiol. 2013; 61:1489–95.CrossrefMedlineGoogle Scholar
409. Egbe AC, Luis SA, Padang R, et al. Outcomes in moderate mixed aortic valve disease: is it time for a paradigm shift?J Am Coll Cardiol. 2016; 67:2321–9.CrossrefMedlineGoogle Scholar
410. Burstow DJ, Nishimura RA, Bailey KR, et al. Continuous wave Doppler echocardiographic measurement of prosthetic valve gradients: a simultaneous Doppler-catheter correlative study.Circulation. 1989; 80:504–14.LinkGoogle Scholar
411. Baumgartner H, Khan S, DeRobertis M, et al. Effect of prosthetic aortic valve design on the Doppler-catheter gradient correlation: an in vitro study of normal St. Jude, Medtronic-Hall, Starr-Edwards and Hancock valves.J Am Coll Cardiol. 1992; 19:324–32.CrossrefMedlineGoogle Scholar
412. Vandervoort PM, Greenberg NL, Powell KA, et al. Pressure recovery in bileaflet heart valve prostheses: localized high velocities and gradients in central and side orifices with implications for Doppler-catheter gradient relation in aortic and mitral position.Circulation. 1995; 92:3464–72.LinkGoogle Scholar
413. Dumesnil JG, Honos GN, Lemieux M, et al. Validation and applications of indexed aortic prosthetic valve areas calculated by Doppler echocardiography.J Am Coll Cardiol. 1990; 16:637–43.CrossrefMedlineGoogle Scholar
414. Bourguignon T, Bouquiaux-Stablo A-L, Loardi C, et al. Very late outcomes for mitral valve replacement with the Carpentier-Edwards pericardial bioprosthesis: 25-year follow-up of 450 implantations.J Thorac Cardiovasc Surg. 2014; 148:2004–11.e1.CrossrefMedlineGoogle Scholar
415. Cannegieter SC, Rosendaal FR, Briët E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses.Circulation. 1994; 89:635–41.LinkGoogle Scholar
416. Cannegieter SC, Rosendaal FR, Wintzen AR, et al. Optimal oral anticoagulant therapy in patients with mechanical heart valves.N Engl J Med. 1995; 333:11–7.CrossrefMedlineGoogle Scholar
417. Sun JCJ, Davidson MJ, Lamy A, et al. Antithrombotic management of patients with prosthetic heart valves: current evidence and future trends.Lancet. 2009; 374:565–76.CrossrefMedlineGoogle Scholar
418. Van de Werf F, Brueckmann M, Connolly SJ, et al. A comparison of dabigatran etexilate with warfarin in patients with mechanical heart valves: the randomized, phase II study to evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart valve replacement (RE-ALIGN)Am Heart J. 2012; 163:931–7.e1.CrossrefMedlineGoogle Scholar
419. Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus warfarin in patients with mechanical heart valves.N Engl J Med. 2013; 369:1206–14.CrossrefMedlineGoogle Scholar
420. Torella M, Torella D, Chiodini P, et al. LOWERing the INtensity of oral anticoaGulant Therapy in patients with bileaflet mechanical aortic valve replacement: results from the “LOWERING-IT” Trial.Am Heart J. 2010; 160:171–8.CrossrefMedlineGoogle Scholar
421. Hering D, Piper C, Bergemann R, et al. Thromboembolic and bleeding complications following St. Jude Medical valve replacement: results of the German Experience With Low-Intensity Anticoagulation Study.Chest. 2005; 127:53–9.CrossrefMedlineGoogle Scholar
422. Acar J, Iung B, Boissel JP, et al. AREVA: multicenter randomized comparison of low-dose versus standard-dose anticoagulation in patients with mechanical prosthetic heart valves.Circulation. 1996; 94:2107–12.LinkGoogle Scholar
423. Whitlock RP, Sun JC, Fremes SE, et al. Antithrombotic and thrombolytic therapy for valvular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.Chest. 2012; 141:e576S–600S.CrossrefMedlineGoogle Scholar
424. Horstkotte D, Scharf RE, Schultheiss HP. Intracardiac thrombosis: patient-related and device-related factors.J Heart Valve Dis. 1995; 4:114–20.MedlineGoogle Scholar
425. Pruefer D, Dahm M, Dohmen G, et al. Intensity of oral anticoagulation after implantation of St. Jude Medical mitral or multiple valve replacement: lessons learned from GELIA (GELIA 5)Eur Heart J Suppl. 2001; 3:Q39–Q43.CrossrefGoogle Scholar
426. Rodés-Cabau J, Masson J-B, Welsh RC, et al. Aspirin versus aspirin plus clopidogrel as antithrombotic treatment following transcatheter aortic valve replacement with a balloon-expandable valve: the ARTE (aspirin versus aspirin + clopidogrel following transcatheter aortic valve implantation) randomized clinical trial.JACC Cardiovasc Interv. 2017; 10:1357–65.CrossrefMedlineGoogle Scholar
427. Zuo W, Yang M, He Y, et al. Single or dual antiplatelet therapy after transcatheter aortic valve replacement: an updated systemic review and meta-analysis.J Thorac Dis. 2019; 11:959–68.CrossrefMedlineGoogle Scholar
428. Maes F, Stabile E, Ussia GP, et al. Meta-analysis comparing single versus dual antiplatelet therapy following transcatheter aortic valve implantation.Am J Cardiol. 2018; 122:310–5.CrossrefMedlineGoogle Scholar
429. Heras M, Chesebro JH, Fuster V, et al. High risk of thromboemboli early after bioprosthetic cardiac valve replacement.J Am Coll Cardiol. 1995; 25:1111–9.CrossrefMedlineGoogle Scholar
430. Colli A, Mestres CA, Castella M, et al. Comparing warfarin to aspirin (WoA) after aortic valve replacement with the St. Jude Medical Epic heart valve bioprosthesis: results of the WoA Epic pilot trial.J Heart Valve Dis. 2007; 16:667–71.MedlineGoogle Scholar
431. Aramendi JI, Mestres C-A, Martinez-León J, et al. Triflusal versus oral anticoagulation for primary prevention of thromboembolism after bioprosthetic valve replacement (TRAC): prospective, randomized, co-operative trial.Eur J Cardiothorac Surg. 2005; 27:854–60.CrossrefMedlineGoogle Scholar
432. Nuñez L, Gil Aguado M, Larrea JL, et al. Prevention of thromboembolism using aspirin after mitral valve replacement with porcine bioprosthesis.Ann Thorac Surg. 1984; 37:84–7.CrossrefMedlineGoogle Scholar
433. Tiede DJ, Nishimura RA, Gastineau DA, et al. Modern management of prosthetic valve anticoagulation.Mayo Clin Proc. 1998; 73:665–80.CrossrefMedlineGoogle Scholar
434. Mérie C, Køber L, Skov Olsen P, et al. Association of warfarin therapy duration after bioprosthetic aortic valve replacement with risk of mortality, thromboembolic complications, and bleeding.JAMA. 2012; 308:2118–25.CrossrefMedlineGoogle Scholar
435. Russo A, Grigioni F, Avierinos J-F, et al. Thromboembolic complications after surgical correction of mitral regurgitation incidence, predictors, and clinical implications.J Am Coll Cardiol. 2008; 51:1203–11.CrossrefMedlineGoogle Scholar
436. Egbe AC, Pislaru SV, Pellikka PA, et al. Bioprosthetic valve thrombosis versus structural failure: clinical and echocardiographic predictors.J Am Coll Cardiol. 2015; 66:2285–94.CrossrefMedlineGoogle Scholar
437. Chakravarty T, Patel A, Kapadia S, et al. Anticoagulation after surgical or transcatheter bioprosthetic aortic valve replacement.J Am Coll Cardiol. 2019; 74:1190–200.CrossrefMedlineGoogle Scholar
438. Sundt TM, Zehr KJ, Dearani JA, et al. Is early anticoagulation with warfarin necessary after bioprosthetic aortic valve replacement?J Thorac Cardiovasc Surg. 2005; 129:1024–31.CrossrefMedlineGoogle Scholar
439. El Bardissi AW, DiBardino DJ, Chen FY, et al. Is early antithrombotic therapy necessary in patients with bioprosthetic aortic valves in normal sinus rhythm?J Thorac Cardiovasc Surg. 2010; 139:1137–45.CrossrefMedlineGoogle Scholar
440. Massel DR, Little SH. Antiplatelet and anticoagulation for patients with prosthetic heart valves.Cochrane Database Syst Rev. 20137CD003464.MedlineGoogle Scholar
441. Puskas J, Gerdisch M, Nichols D, et al. Reduced anticoagulation after mechanical aortic valve replacement: interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized Food and Drug Administration investigational device exemption trial.J Thorac Cardiovasc Surg. 2014; 147:1202–10.CrossrefMedlineGoogle Scholar
442. Puskas JD, Gerdisch M, Nichols D, et al. Anticoagulation and antiplatelet strategies after On-X mechanical aortic valve replacement.J Am Coll Cardiol. 2018; 71:2717–26.CrossrefMedlineGoogle Scholar
443. Ussia GP, Scarabelli M, Mulè M, et al. Dual antiplatelet therapy versus aspirin alone in patients undergoing transcatheter aortic valve implantation.Am J Cardiol. 2011; 108:1772–6.CrossrefMedlineGoogle Scholar
444. Dangas GD, Tijssen JGP, Wohrle J, et al. A controlled trial of rivaroxaban after transcatheter aortic-valve replacement.N Engl J Med. 2020; 382:120–9.CrossrefMedlineGoogle Scholar
445. Makkar RR, Fontana G, Jilaihawi H, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves.N Engl J Med. 2015; 373:2015–24.CrossrefMedlineGoogle Scholar
446. Jose J, Sulimov DS, El-Mawardy M, et al. Clinical bioprosthetic heart valve thrombosis after transcatheter aortic valve replacement: incidence, characteristics, and treatment outcomes.JACC Cardiovasc Interv. 2017; 10:686–97.CrossrefMedlineGoogle Scholar
447. Jochheim D, Barbanti M, Capretti G, et al. Oral anticoagulant type and outcomes after transcatheter aortic valve replacement.JACC Cardiovasc Interv. 2019; 12:1566–76.CrossrefMedlineGoogle Scholar
448. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation.N Engl J Med. 2009; 361:1139–51.CrossrefMedlineGoogle Scholar
449. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation.N Engl J Med. 2013; 369:2093–104.CrossrefMedlineGoogle Scholar
450. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation.N Engl J Med. 2011; 365:883–91.CrossrefMedlineGoogle Scholar
451. Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation.N Engl J Med. 2011; 365:981–92.CrossrefMedlineGoogle Scholar
452. Pollack CV, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal.N Engl J Med. 2015; 373:511–20.CrossrefMedlineGoogle Scholar
453. Siegal DM, Curnutte JT, Connolly SJ, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity.N Engl J Med. 2015; 373:2413–24.CrossrefMedlineGoogle Scholar
454. Connolly SJ, Milling TJ, Eikelboom JW, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors.N Engl J Med. 2016; 375:1131–41.CrossrefMedlineGoogle Scholar
455. Connolly SJ, Crowther M, Eikelboom JW, et al. Full study report of andexanet alfa for bleeding associated with factor Xa inhibitors.N Engl J Med. 2019; 380:1326–35.CrossrefMedlineGoogle Scholar
456. Pollack CV, Reilly PA, van Ryn J, et al. Idarucizumab for dabigatran reversal: full cohort analysis.N Engl J Med. 2017; 377:431–41.CrossrefMedlineGoogle Scholar
457. Dangas GD, Weitz JI, Giustino G, et al. Prosthetic heart valve thrombosis.J Am Coll Cardiol. 2016; 68:2670–89.CrossrefMedlineGoogle Scholar
458. Chakravarty T, Søndergaard L, Friedman J, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study.Lancet. 2017; 389:2383–92.CrossrefMedlineGoogle Scholar
459. Montorsi P, DB F, Muratori M, et al. Role of cine-fluoroscopy, transthoracic, and transesophageal echocardiography in patients with suspected prosthetic heart valve thrombosis.Am J Cardiol. 2000; 85:58–64.CrossrefMedlineGoogle Scholar
460. Muratori M, Montorsi P, Teruzzi G, et al. Feasibility and diagnostic accuracy of quantitative assessment of mechanical prostheses leaflet motion by transthoracic and transesophageal echocardiography in suspected prosthetic valve dysfunction.Am J Cardiol. 2006; 97:94–100.CrossrefMedlineGoogle Scholar
461. Cianciulli TE, Lax JA, Beck MA, et al. Cinefluoroscopic assessment of mechanical disc prostheses: its value as a complementary method to echocardiography.J Heart Valve Dis. 2005; 14:664–73.MedlineGoogle Scholar
462. Symersky P, Budde RPJ, de Mol BAJM, et al. Comparison of multidetector-row computed tomography to echocardiography and fluoroscopy for evaluation of patients with mechanical prosthetic valve obstruction.Am J Cardiol. 2009; 104:1128–34.CrossrefMedlineGoogle Scholar
463. Bapat V, Attia R, Redwood S, et al. Use of transcatheter heart valves for a valve-in-valve implantation in patients with degenerated aortic bioprosthesis: technical considerations and results.J Thorac Cardiovasc Surg. 2012; 144:1372–9.CrossrefMedlineGoogle Scholar
464. Gündüz S, Özkan M, Kalçik M, et al. Sixty-four-section cardiac computed tomography in mechanical prosthetic heart valve dysfunction: thrombus or pannus.Circ Cardiovasc Imaging. 2015; 8:e003246.LinkGoogle Scholar
465. Suh YJ, Lee S, Im DJ, et al. Added value of cardiac computed tomography for evaluation of mechanical aortic valve: emphasis on evaluation of pannus with surgical findings as standard reference.Int J Cardiol. 2016; 214:454–60.CrossrefMedlineGoogle Scholar
466. Cáceres-Lóriga FM, Pérez-López H, Morlans-Hernández K, et al. Thrombolysis as first choice therapy in prosthetic heart valve thrombosis: a study of 68 patients.J Thromb Thrombolysis. 2006; 21:185–90.CrossrefMedlineGoogle Scholar
467. Karthikeyan G, Senguttuvan NB, Joseph J, et al. Urgent surgery compared with fibrinolytic therapy for the treatment of left-sided prosthetic heart valve thrombosis: a systematic review and meta-analysis of observational studies.Eur Heart J. 2013; 34:1557–66.CrossrefMedlineGoogle Scholar
468. Keuleers S, Herijgers P, Herregods M-C, et al. Comparison of thrombolysis versus surgery as a first line therapy for prosthetic heart valve thrombosis.Am J Cardiol. 2011; 107:275–9.CrossrefMedlineGoogle Scholar
469. Nagy A, Dénes M, Lengyel M. Predictors of the outcome of thrombolytic therapy in prosthetic mitral valve thrombosis: a study of 62 events.J Heart Valve Dis. 2009; 18:268–75.MedlineGoogle Scholar
470. Özkan M, Çakal B, Karakoyun S, et al. Thrombolytic therapy for the treatment of prosthetic heart valve thrombosis in pregnancy with low-dose, slow infusion of tissue-type plasminogen activator.Circulation. 2013; 128:532–40.LinkGoogle Scholar
471. Özkan M, Gündüz S, Biteker M, et al. Comparison of different TEE-guided thrombolytic regimens for prosthetic valve thrombosis: the TROIA trial.JACC Cardiovasc Imaging. 2013; 6:206–16.CrossrefMedlineGoogle Scholar
472. Roudaut R, Lafitte S, Roudaut M-F, et al. Management of prosthetic heart valve obstruction: fibrinolysis versus surgery: early results and long-term follow-up in a single-centre study of 263 cases.Arch Cardiovasc Dis. 2009; 102:269–77.CrossrefMedlineGoogle Scholar
473. Tong AT, Roudaut R, Ozkan M, et al. Transesophageal echocardiography improves risk assessment of thrombolysis of prosthetic valve thrombosis: results of the international PRO-TEE registry.J Am Coll Cardiol. 2004; 43:77–84.CrossrefMedlineGoogle Scholar
474. Bade AS, Shaikh SSA, Khemani H, et al. Thrombolysis is an effective and safe therapy in stuck mitral valves with delayed presentation as well as hemodynamically unstable patients: a single centre study.Cardiol Res. 2018; 9:161–4.CrossrefMedlineGoogle Scholar
475. Pragt H, van Melle JP, Javadikasgari H, et al. Mechanical valves in the pulmonary position: an international retrospective analysis.J Thorac Cardiovasc Surg. 2017; 154:1371–8.e1.CrossrefMedlineGoogle Scholar
476. Taherkhani M, Hashemi SR, Hekmat M, et al. Thrombolytic therapy for right-sided mechanical pulmonic and tricuspid valves: the largest survival analysis to date.Tex Heart Inst J. 2015; 42:543–7.CrossrefMedlineGoogle Scholar
477. Kumar BM, Gnanaraj JP, Swaminathan N, et al. Assessment of hemodynamic and clinical response in thrombolytic therapy for prosthetic valve thrombosis.Indian Heart J. 2017; 69:S6.CrossrefMedlineGoogle Scholar
478. Puri R, Auffret V, Rodés-Cabau J. Bioprosthetic valve thrombosis.J Am Coll Cardiol. 2017; 69:2193–211.CrossrefMedlineGoogle Scholar
479. Puvimanasinghe JP, Steyerberg EW, Takkenberg JJ, et al. Prognosis after aortic valve replacement with a bioprosthesis: predictions based on meta-analysis and microsimulation.Circulation. 2001; 103:1535–41.LinkGoogle Scholar
480. Jander N, Kienzle R-P, Kayser G, et al. Usefulness of phenprocoumon for the treatment of obstructing thrombus in bioprostheses in the aortic valve position.Am J Cardiol. 2012; 109:257–62.CrossrefMedlineGoogle Scholar
481. Butnaru A, Shaheen J, Tzivoni D, et al. Diagnosis and treatment of early bioprosthetic malfunction in the mitral valve position due to thrombus formation.Am J Cardiol. 2013; 112:1439–44.CrossrefMedlineGoogle Scholar
482. Pislaru SV, Hussain I, Pellikka PA, et al. Misconceptions, diagnostic challenges and treatment opportunities in bioprosthetic valve thrombosis: lessons from a case series.Eur J Cardiothorac Surg. 2015; 47:725–32.CrossrefMedlineGoogle Scholar
483. De Marchena E, Mesa J, Pomenti S, et al. Thrombus formation following transcatheter aortic valve replacement.JACC Cardiovasc Interv. 2015; 8:728–39.CrossrefMedlineGoogle Scholar
484. Zoghbi WA, Chambers JB, Dumesnil JG, et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves. Developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography.J Am Soc Echocardiogr. 2009; 22:9751014.CrossrefMedlineGoogle Scholar
485. Lancellotti P, Pibarot P, Chambers J, et al. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging.Eur Heart J Cardiovasc Imaging. 2016; 17:589–90.CrossrefMedlineGoogle Scholar
486. Leontyev S, Borger MA, Davierwala P, et al. Redo aortic valve surgery: early and late outcomes.Ann Thorac Surg. 2011; 91:1120–6.CrossrefMedlineGoogle Scholar
487. Kaneko T, Vassileva CM, Englum B, et al. Contemporary outcomes of repeat aortic valve replacement: a benchmark for tTranscatheter valve-in-valve procedures.Ann Thorac Surg. 2015; 100:1298–304.CrossrefMedlineGoogle Scholar
488. Jaussaud N, Gariboldi V, Grisoli D, et al. Risk of reoperation for mitral bioprosthesis dysfunction.J Heart Valve Dis. 2012; 21:56–60.MedlineGoogle Scholar
490. Ye J, Cheung A, Yamashita M, et al. Transcatheter aortic and mitral valve-in-valve implantation for failed surgical bioprosthetic valves: an 8-year single-center experience.JACC Cardiovasc Interv. 2015; 8:1735–44.CrossrefMedlineGoogle Scholar
491. Latib A, Naganuma T, Abdel-Wahab M, et al. Treatment and clinical outcomes of transcatheter heart valve thrombosis.Circ Cardiovasc Interv. 2015; 8:e001779.LinkGoogle Scholar
492. Hascoet S, Smolka G, Bagate F, et al. Multimodality imaging guidance for percutaneous paravalvular leak closure: Insights from the multi-centre FFPP register.Arch Cardiovasc Dis. 2018; 111:421–31.CrossrefMedlineGoogle Scholar
493. García-Fernández MA, Cortés M, García-Robles JA, et al. Utility of real-time three-dimensional transesophageal echocardiography in evaluating the success of percutaneous transcatheter closure of mitral paravalvular leaks.J Am Soc Echocardiogr. 2010; 23:26–32.CrossrefMedlineGoogle Scholar
494. Nombela-Franco L, Ribeiro HB, Urena M, et al. Significant mitral regurgitation left untreated at the time of aortic valve replacement: a comprehensive review of a frequent entity in the transcatheter aortic valve replacement era.J Am Coll Cardiol. 2014; 63:2643–58.CrossrefMedlineGoogle Scholar
495. Ruiz CE, Hahn RT, Berrebi A, et al. Clinical trial principles and endpoint definitions for paravalvular leaks in surgical prosthesis: an expert statement.J Am Coll Cardiol. 2017; 69:2067–87.CrossrefMedlineGoogle Scholar
496. Akins CW, Bitondo JM, Hilgenberg AD, et al. Early and late results of the surgical correction of cardiac prosthetic paravalvular leaks.J Heart Valve Dis. 2005; 14:792–9.MedlineGoogle Scholar
497. Kaneko T, Vassileva CM, Englum B, et al. Contemporary outcomes of repeat aortic valve replacement: a benchmark for tTranscatheter valve-in-valve procedures.Ann Thorac Surg. 2015; 100:1298–304.CrossrefMedlineGoogle Scholar
498. Sorajja P, Cabalka AK, Hagler DJ, et al. Percutaneous repair of paravalvular prosthetic regurgitation: acute and 30-day outcomes in 115 patients.Circ Cardiovasc Interv. 2011; 4:314–21.LinkGoogle Scholar
499. Sorajja P, Cabalka AK, Hagler DJ, et al. Long-term follow-up of percutaneous repair of paravalvular prosthetic regurgitation.J Am Coll Cardiol. 2011; 58:2218–24.CrossrefMedlineGoogle Scholar
500. Alkhouli M, Rihal CS, Zack CJ, et al. Transcatheter and surgical management of mitral paravalvular leak: long-term outcomes.JACC Cardiovasc Interv. 2017; 10:1946–56.CrossrefMedlineGoogle Scholar
501. Alkhouli M, Zack CJ, Sarraf M, et al. Successful percutaneous mitral paravalvular leak closure is associated with improved midterm survival.Circ Cardiovasc Interv. 2017; 10:e005730.LinkGoogle Scholar
502. Ruiz CE, Jelnin V, Kronzon I, et al. Clinical outcomes in patients undergoing percutaneous closure of periprosthetic paravalvular leaks.J Am Coll Cardiol. 2011; 58:2210–7.CrossrefMedlineGoogle Scholar
503. Phan K, Zhao D-F, Wang N, et al. Transcatheter valve-in-valve implantation versus reoperative conventional aortic valve replacement: a systematic review.J Thorac Dis. 2016; 8:E83–93.MedlineGoogle Scholar
504. Webb JG, Wood DA, Ye J, et al. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves.Circulation. 2010; 121:1848–57.LinkGoogle Scholar
505. Steckelberg JM, Wilson WR. Risk factors for infective endocarditis.Infect Dis Clin North Am. 1993; 7:9–19.CrossrefMedlineGoogle Scholar
506. Durack DT, Lukes AS, Bright DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings.Duke Endocarditis Service Am J Med. 1994; 96:200–9.Google Scholar
507. Kupferwasser LI, Darius H, Müller AM, et al. Diagnosis of culture-negative endocarditis: the role of the Duke criteria and the impact of transesophageal echocardiography.Am Heart J. 2001; 142:146–52.CrossrefMedlineGoogle Scholar
508. Li JS, Sexton DJ, Mick N, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis.Clin Infect Dis. 2000; 30:633–8.CrossrefMedlineGoogle Scholar
509. Pérez-Vázquez A, Fariñas MC, García-Palomo JD, et al. Evaluation of the Duke criteria in 93 episodes of prosthetic valve endocarditis: could sensitivity be improved?Arch Intern Med. 2000; 160:1185–91.CrossrefMedlineGoogle Scholar
510. Lukes AS, Bright DK, Durack DT. Diagnosis of infective endocarditis.Infect Dis Clin North Am. 1993; 7:1–8.CrossrefMedlineGoogle Scholar
511. Dodds GA, Sexton DJ, Durack DT, et al. Negative predictive value of the Duke criteria for infective endocarditis.Am J Cardiol. 1996; 77:403–7.CrossrefMedlineGoogle Scholar
512. Bayer AS. Diagnostic criteria for identifying cases of endocarditis: revisiting the Duke criteria two years later.Clin Infect Dis. 1996; 23:303–4.CrossrefMedlineGoogle Scholar
514. Tsutsumi T, Eron LJ. Clinical use of the Duke criteria in patients with suspected infective endocarditis and negative transesophageal echocardiograms.Infect Dis Clin Pract. 2012; 20:315–8.CrossrefGoogle Scholar
515. Murdoch DR, Corey GR, Hoen B, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study.Arch Intern Med. 2009; 169:463–73.CrossrefMedlineGoogle Scholar
516. Haldar SM, O’Gara PT. Infective endocarditis: diagnosis and management.Nat Clin Pract Cardiovasc Med. 2006; 3:310–7.CrossrefMedlineGoogle Scholar
518. Mügge A, Daniel WG, Frank G, et al. Echocardiography in infective endocarditis: reassessment of prognostic implications of vegetation size determined by the transthoracic and the transesophageal approach.J Am Coll Cardiol. 1989; 14:631–8.CrossrefMedlineGoogle Scholar
519. Burger AJ, Peart B, Jabi H, et al. The role of two-dimensional echocardiology in the diagnosis of infective endocarditis [corrected].Angiology. 1991; 42:552–60.CrossrefMedlineGoogle Scholar
520. Irani WN, Grayburn PA, Afridi I. A negative transthoracic echocardiogram obviates the need for transesophageal echocardiography in patients with suspected native valve active infective endocarditis.Am J Cardiol. 1996; 78:101–3.CrossrefMedlineGoogle Scholar
521. Liu Y-W, Tsai W-C, Hsu C-H, et al. Judicious use of transthoracic echocardiography in infective endocarditis screening.Can J Cardiol. 2009; 25:703–5.CrossrefMedlineGoogle Scholar
522. Kemp WEJ, Citrin B, Byrd BFEchocardiography in infective endocarditis.South Med J. 1999; 92:744–54.MedlineGoogle Scholar
523. Rubenson DS, Tucker CR, Stinson EB, et al. The use of echocardiography in diagnosing culture-negative endocarditis.Circulation. 1981; 64:641–6.LinkGoogle Scholar
524. Shapiro SM, Young E, De Guzman S, et al. Transesophageal echocardiography in diagnosis of infective endocarditis.Chest. 1994; 105:377–82.CrossrefMedlineGoogle Scholar
525. Erbel R, Rohmann S, Drexler M, et al. Improved diagnostic value of echocardiography in patients with infective endocarditis by transoesophageal approach: a prospective study.Eur Heart J. 1988; 9:43–53.CrossrefMedlineGoogle Scholar
526. Rasmussen RV, Høst U, Arpi M, et al. Prevalence of infective endocarditis in patients with Staphylococcus aureus bacteraemia: the value of screening with echocardiography.Eur J Echocardiogr. 2011; 12:414–20.CrossrefMedlineGoogle Scholar
527. Reynolds HR, Jagen MA, Tunick PA, et al. Sensitivity of transthoracic versus transesophageal echocardiography for the detection of native valve vegetations in the modern era.J Am Soc Echocardiogr. 2003; 16:67–70.CrossrefMedlineGoogle Scholar
528. Daniel WG, Mügge A, Martin RP, et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography.N Engl J Med. 1991; 324:795–800.CrossrefMedlineGoogle Scholar
529. Sochowski RA, Chan KL. Implication of negative results on a monoplane transesophageal echocardiographic study in patients with suspected infective endocarditis.J Am Coll Cardiol. 1993; 21:216–21.CrossrefMedlineGoogle Scholar
530. Shively BK, Gurule FT, Roldan CA, et al. Diagnostic value of transesophageal compared with transthoracic echocardiography in infective endocarditis.J Am Coll Cardiol. 1991; 18:391–7.CrossrefMedlineGoogle Scholar
531. Pedersen WR, Walker M, Olson JD, et al. Value of transesophageal echocardiography as an adjunct to transthoracic echocardiography in evaluation of native and prosthetic valve endocarditis.Chest. 1991; 100:351–6.CrossrefMedlineGoogle Scholar
532. Ronderos RE, Portis M, Stoermann W, et al. Are all echocardiographic findings equally predictive for diagnosis in prosthetic endocarditis?J Am Soc Echocardiogr. 2004; 17:664–9.CrossrefMedlineGoogle Scholar
533. Roe MT, Abramson MA, Li J, et al. Clinical information determines the impact of transesophageal echocardiography on the diagnosis of infective endocarditis by the duke criteria.Am Heart J. 2000; 139:945–51.CrossrefMedlineGoogle Scholar
534. Karalis DG, Bansal RC, Hauck AJ, et al. Transesophageal echocardiographic recognition of subaortic complications in aortic valve endocarditis: clinical and surgical implications.Circulation. 1992; 86:353–62.LinkGoogle Scholar
535. El-Ahdab F, Benjamin DK, Wang A, et al. Risk of endocarditis among patients with prosthetic valves and Staphylococcus aureus bacteremia.Am J Med. 2005; 118:225–9.CrossrefMedlineGoogle Scholar
536. Douglas PS, Garcia MJ, Haines DE, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance.J Am Coll Cardiol. 2011; 57:1126–66.CrossrefMedlineGoogle Scholar
537. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography)Circulation. 2003; 108:1146–62.LinkGoogle Scholar
538. Vilacosta I, Graupner C, San Román JA, et al. Risk of embolization after institution of antibiotic therapy for infective endocarditis.J Am Coll Cardiol. 2002; 39:1489–95.CrossrefMedlineGoogle Scholar
539. Hoen B, Alla F, Selton-Suty C, et al. Changing profile of infective endocarditis: results of a 1-year survey in France.JAMA. 2002; 288:75–81.CrossrefMedlineGoogle Scholar
540. Rosen AB, Fowler VG, Corey GR, et al. Cost-effectiveness of transesophageal echocardiography to determine the duration of therapy for intravascular catheter-associated Staphylococcus aureus bacteremia.Ann Intern Med. 1999; 130:810–20.CrossrefMedlineGoogle Scholar
541. Fagman E, Perrotta S, Bech-Hanssen O, et al. ECG-gated computed tomography: a new role for patients with suspected aortic prosthetic valve endocarditis.Eur Radiol. 2012; 22:2407–14.CrossrefMedlineGoogle Scholar
542. Rohmann S, Erbel R, Darius H, et al. Prediction of rapid versus prolonged healing of infective endocarditis by monitoring vegetation size.J Am Soc Echocardiogr. 1991; 4:465–74.CrossrefMedlineGoogle Scholar
543. Massoure P-L, Reuter S, Lafitte S, et al. Pacemaker endocarditis: clinical features and management of 60 consecutive cases.Pacing Clin Electrophysiol. 2007; 30:12–9.CrossrefMedlineGoogle Scholar
544. Narducci ML, Pelargonio G, Russo E, et al. Usefulness of intracardiac echocardiography for the diagnosis of cardiovascular implantable electronic device-related endocarditis.J Am Coll Cardiol. 2013; 61:1398–405.CrossrefMedlineGoogle Scholar
545. Cabell CH, Jollis JG, Peterson GE, et al. Changing patient characteristics and the effect on mortality in endocarditis.Arch Intern Med. 2002; 162:90–4.CrossrefMedlineGoogle Scholar
546. Habib G, Hoen B, Tornos P, et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC)Eur Heart J. 2009; 30:2369–413.CrossrefMedlineGoogle Scholar
548. Lengyel M. The impact of transesophageal echocardiography on the management of prosthetic valve endocarditis: experience of 31 cases and review of the literature.J Heart Valve Dis. 1997; 6:204–11.MedlineGoogle Scholar
550. Ghatak A, Pullatt R, Vyse S, et al. Appropriateness criteria are an imprecise measure for repeat echocardiograms.Echocardiography. 2011; 28:131–5.CrossrefMedlineGoogle Scholar
551. Shapira Y, Weisenberg DE, Vaturi M, et al. The impact of intraoperative transesophageal echocardiography in infective endocarditis.Isr Med Assoc J. 2007; 9:299–302.MedlineGoogle Scholar
552. Yao F, Han L, Xu Z, et al. Surgical treatment of multivalvular endocarditis: twenty-one-year single center experience.J Thorac Cardiovasc Surg. 2009; 137:1475–80.CrossrefMedlineGoogle Scholar
553. Eltzschig HK, Rosenberger P, Löffler M, et al. Impact of intraoperative transesophageal echocardiography on surgical decisions in 12,566 patients undergoing cardiac surgery.Ann Thorac Surg. 2008; 85:845–52.CrossrefMedlineGoogle Scholar
554. Silva F, Arruda R, Nobre A, et al. Impact of intraoperative transesophageal echocardiography in cardiac surgery: retrospective analysis of a series of 850 examinations.Rev Port Cardiol. 2010; 29:1363–82.MedlineGoogle Scholar
555. Iversen K, Ihlemann N, Gill SU, et al. Partial oral versus intravenous antibiotic treatment of endocarditis.N Engl J Med. 2019; 380:415–24.CrossrefMedlineGoogle Scholar
556. Watanakunakorn C. Staphylococcus aureus endocarditis at a community teaching hospital, 1980 to 1991: an analysis of 106 cases.Arch Intern Med. 1994; 154:2330–5.CrossrefMedlineGoogle Scholar
557. Abraham J, Mansour C, Veledar E, et al. Staphylococcus aureus bacteremia and endocarditis: the Grady Memorial Hospital experience with methicillin-sensitive S aureus and methicillin-resistant S aureus bacteremia.Am Heart J. 2004; 147:536–9.CrossrefMedlineGoogle Scholar
558. Kaasch AJ, Fowler VG, Rieg S, et al. Use of a simple criteria set for guiding echocardiography in nosocomial Staphylococcus aureus bacteremia.Clin Infect Dis. 2011; 53:1–9.CrossrefMedlineGoogle Scholar
559. Petti CA, Fowler VGStaphylococcus aureus bacteremia and endocarditis.Cardiol Clin. 2003; 21:219–33, vii.CrossrefMedlineGoogle Scholar
560. Fowler VG, Sanders LL, Kong LK, et al. Infective endocarditis due to Staphylococcus aureus: 59 prospectively identified cases with follow-up.Clin Infect Dis. 1999; 28:106–14.CrossrefMedlineGoogle Scholar
561. San Martin J, Sarriá C, de las Cuevas C, et al. Relevance of clinical presentation and period of diagnosis in prosthetic valve endocarditis.J Heart Valve Dis. 2010; 19:131–8.MedlineGoogle Scholar
562. Knudsen JB, Fuursted K, Petersen E, et al. Failure of clinical features of low probability endocarditis: the early echo remains essential.Scand Cardiovasc J. 2011; 45:133–8.CrossrefMedlineGoogle Scholar
563. Lamas CC, Eykyn SJ. Suggested modifications to the Duke criteria for the clinical diagnosis of native valve and prosthetic valve endocarditis: analysis of 118 pathologically proven cases.Clin Infect Dis. 1997; 25:713–9.CrossrefMedlineGoogle Scholar
565. Feuchtner GM, Stolzmann P, Dichtl W, et al. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings.J Am Coll Cardiol. 2009; 53:436–44.CrossrefMedlineGoogle Scholar
566. Gahide G, Bommart S, Demaria R, et al. Preoperative evaluation in aortic endocarditis: findings on cardiac CT.AJR Am J Roentgenol. 2010; 194:574–8.CrossrefMedlineGoogle Scholar
567. Lentini S, Monaco F, Tancredi F, et al. Aortic valve infective endocarditis: could multi-detector CT scan be proposed for routine screening of concomitant coronary artery disease before surgery?Ann Thorac Surg. 2009; 87:1585–7.CrossrefMedlineGoogle Scholar
568. Schoepf U, White R, Woodard P, et al. ACR Appropriateness Criteria®: Suspected Infective Endocarditis.Agency for Healthcare Research and Quality; 2011.Google Scholar
569. Kung VWS, Jarral OA, Shipolini AR, et al. Is it safe to perform coronary angiography during acute endocarditis?Interact Cardiovasc Thorac Surg. 2011; 13:158–67.CrossrefMedlineGoogle Scholar
570. Aoyagi S, Nishimi M, Kawano H, et al. Obstruction of St Jude Medical valves in the aortic position: significance of a combination of cineradiography and echocardiography.J Thorac Cardiovasc Surg. 2000; 120:142–7.CrossrefMedlineGoogle Scholar
571. Vogel W, Stoll HP, Bay W, et al. Cineradiography for determination of normal and abnormal function in mechanical heart valves.Am J Cardiol. 1993; 71:225–32.CrossrefMedlineGoogle Scholar
572. Mahmood M, Kendi AT, Ajmal S, et al. Meta-analysis of 18F-FDG PET/CT in the diagnosis of infective endocarditis.J Nucl Cardiol. 2019; 26:922–35.CrossrefMedlineGoogle Scholar
573. de Camargo RA, Sommer Bitencourt M, Meneghetti JC, et al. The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis of left-sided endocarditis: native vs prosthetic valves endocarditis.Clin Infect Dis. 2020; 70:583–94.MedlineGoogle Scholar
574. Scholtens AM, Swart LE, Verberne HJ, et al. Dual-time-point FDG PET/CT imaging in prosthetic heart valve endocarditis.J Nucl Cardiol. 2018; 25:1960–7.CrossrefMedlineGoogle Scholar
575. Fowler VG, Li J, Corey GR, et al. Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients.J Am Coll Cardiol. 1997; 30:1072–8.CrossrefMedlineGoogle Scholar
576. Sullenberger AL, Avedissian LS, Kent SM. Importance of transesophageal echocardiography in the evaluation of Staphylococcus aureus bacteremia.J Heart Valve Dis. 2005; 14:23–8.MedlineGoogle Scholar
577. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children.Clin Infect Dis. 2011; 52:e18–55.CrossrefMedlineGoogle Scholar
578. Gould FK, Denning DW, Elliott TSJ, et al. Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: a report of the Working Party of the British Society for Antimicrobial Chemotherapy.J Antimicrob Chemother. 2012; 67:269–89.CrossrefMedlineGoogle Scholar
579. Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association.Circulation. 2005; 111:e394–434.LinkGoogle Scholar
580. López J, Sevilla T, Vilacosta I, et al. Prognostic role of persistent positive blood cultures after initiation of antibiotic therapy in left-sided infective endocarditis.Eur Heart J. 2013; 34:1749–54.CrossrefMedlineGoogle Scholar
581. Partridge DG, O’Brien E, Chapman ALN. Outpatient parenteral antibiotic therapy for infective endocarditis: a review of 4 years’ experience at a UK centre.Postgrad Med J. 2012; 88:377–81.CrossrefMedlineGoogle Scholar
582. Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy.Mayo Clin Proc. 2011; 86:156–67.CrossrefMedlineGoogle Scholar
583. DiNubile MJ. Short-course antibiotic therapy for right-sided endocarditis caused by Staphylococcus aureus in injection drug users.Ann Intern Med. 1994; 121:873–6.CrossrefMedlineGoogle Scholar
584. Martí-Carvajal AJ, Dayer M, Conterno LO, et al. A comparison of different antibiotic regimens for the treatment of infective endocarditis.Cochrane Database Syst Rev. 2016; 4:CD009880.MedlineGoogle Scholar
585. Liebschutz JM, Crooks D, Herman D, et al. Buprenorphine treatment for hospitalized, opioid-dependent patients: a randomized clinical trial.JAMA Intern Med. 2014; 174:1369–76.CrossrefMedlineGoogle Scholar
586. Englander H, Weimer M, Solotaroff R, et al. Planning and designing the Improving Addiction Care Team (IMPACT) for hospitalized adults with substance use disorder.J Hosp Med. 2017; 12:339–42.CrossrefMedlineGoogle Scholar
587. Schranz AJ, Fleischauer A, Chu VH, et al. Trends in drug use-associated infective endocarditis and heart valve surgery, 2007 to 2017: a study of statewide discharge data.Ann Intern Med. 2019; 170:31–40.CrossrefMedlineGoogle Scholar
588. Masuda J, Yutani C, Waki R, et al. Histopathological analysis of the mechanisms of intracranial hemorrhage complicating infective endocarditis.Stroke. 1992; 23:843–50.LinkGoogle Scholar
589. Tornos P, Almirante B, Mirabet S, et al. Infective endocarditis due to Staphylococcus aureus: deleterious effect of anticoagulant therapy.Arch Intern Med. 1999; 159:473–5.CrossrefMedlineGoogle Scholar
590. Carpenter JL, McAllister CK. Anticoagulation in prosthetic valve endocarditis.South Med J. 1983; 76:1372–5.CrossrefMedlineGoogle Scholar
591. Lieberman A, Hass WK, Pinto R, et al. Intracranial hemorrhage and infarction in anticoagulated patients with prosthetic heart valves.Stroke. 1978; 9:18–24.LinkGoogle Scholar
592. Wilson WR, Geraci JE, Danielson GK, et al. Anticoagulant therapy and central nervous system complications in patients with prosthetic valve endocarditis.Circulation. 1978; 57:1004–7.LinkGoogle Scholar
593. Ananthasubramaniam K, Beattie JN, Rosman HS, et al. How safely and for how long can warfarin therapy be withheld in prosthetic heart valve patients hospitalized with a major hemorrhage?Chest. 2001; 119:478–84.CrossrefMedlineGoogle Scholar
594. Snygg-Martin U, Gustafsson L, Rosengren L, et al. Cerebrovascular complications in patients with left-sided infective endocarditis are common: a prospective study using magnetic resonance imaging and neurochemical brain damage markers.Clin Infect Dis. 2008; 47:23–30.CrossrefMedlineGoogle Scholar
596. Cerebral Embolism Study Group. Immediate anticoagulation of embolic stroke: brain hemorrhage and management options.Stroke. 1984; 15:779–89.LinkGoogle Scholar
597. Kamalakannan D, Beeai M, Gardin JM, et al. Anticoagulation in infective endocarditis: a survey of infectious disease specialists and cardiologists.Infect Dis Clin Pract. 2005; 13:122–6.CrossrefGoogle Scholar
598. Nagpal A, Sohail MR, Steckelberg JM. Prosthetic valve endocarditis: state of the heart.Clinical Investigation. 2012; 2:803–17.CrossrefGoogle Scholar
599. Thuny F, Avierinos J-F, Tribouilloy C, et al. Impact of cerebrovascular complications on mortality and neurologic outcome during infective endocarditis: a prospective multicentre study.Eur Heart J. 2007; 28:1155–61.CrossrefMedlineGoogle Scholar
600. Duval X, Iung B, Klein I, et al. Effect of early cerebral magnetic resonance imaging on clinical decisions in infective endocarditis: a prospective study.Ann Intern Med. 2010; 152:497–504, W175.CrossrefMedlineGoogle Scholar
601. Pruitt AA, Rubin RH, Karchmer AW, et al. Neurologic complications of bacterial endocarditis.Medicine (Baltimore). 1978; 57:329–43.CrossrefMedlineGoogle Scholar
602. Chan K-L, Tam J, Dumesnil JG, et al. Effect of long-term aspirin use on embolic events in infective endocarditis.Clin Infect Dis. 2008; 46:37–41.CrossrefMedlineGoogle Scholar
603. Fang MC, Go AS, Chang Y, et al. Death and disability from warfarin-associated intracranial and extracranial hemorrhages.Am J Med. 2007; 120:700–5.CrossrefMedlineGoogle Scholar
604. Rasmussen RV, Snygg-Martin U, Olaison L, et al. Major cerebral events in Staphylococcus aureus infective endocarditis: is anticoagulant therapy safe?Cardiology. 2009; 114:284–91.CrossrefMedlineGoogle Scholar
605. Sonneville R, Mirabel M, Hajage D, et al. Neurologic complications and outcomes of infective endocarditis in critically ill patients: the ENDOcardite en REAnimation prospective multicenter study.Crit Care Med. 2011; 39:1474–81.CrossrefMedlineGoogle Scholar
606. Chan K-L, Dumesnil JG, Cujec B, et al. A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis.J Am Coll Cardiol. 2003; 42:775–80.CrossrefMedlineGoogle Scholar