Skip main navigation

Sex and Age Differences in the Association Between Metabolic Dysfunction-Associated Fatty Liver Disease and Heart Failure: A Prospective Cohort Study

Originally publishedhttps://doi.org/10.1161/CIRCHEARTFAILURE.123.010841Circulation: Heart Failure. 2024;17

    BACKGROUND:

    Metabolic dysfunction-associated fatty liver disease (MAFLD) is a risk factor for heart failure (HF) occurrence, but it remains unclear whether the association between MAFLD and HF differs in different sexes and ages.

    METHODS:

    A total of 96 576 participants of Kailuan Study were included. MAFLD was defined as presence of hepatic steatosis and metabolic dysfunction and classified as mild and significant by ultrasound. Hazard ratios (HRs) were calculated by Cox regression models.

    RESULTS:

    After a median follow-up of 14.0 years, 2939 participants developed HF. Adjusting for confounding factors, mild-MAFLD (HR, 1.27 [95% CI, 1.16–1.39]) and significant-MAFLD (HR, 1.45 [95% CI, 1.31–1.63]) were associated with a higher risk of HF in all participants, and the risk differed by sex (Pinteraction<0.05) and age (Pinteraction<0.001). Compared with non-MAFLD participants, in women, significant-MAFLD was associated with an 84% (HR, 1.84 [95% CI, 1.43–2.37]) increased risk of HF; however, in men, the risk was 36% (HR, 1.36 [95% CI, 1.20–1.53]). In participants under 45 years, mild-MAFLD and significant-MAFLD had a 55% (HR, 1.55 [95% CI, 1.07–2.25]) and 172% (HR, 2.72 [95% CI, 1.87–3.97]) increased risk of HF; however, in participants over 65 years, even significant-MAFLD did not associate with a higher risk of HF (HR, 1.11 [95% CI, 0.92–1.34]). Afterwards, we stratified all participants by both sex and age and found that the risk of MAFLD-associated HF decreased with age in men (Pinteraction<0.05) and women (Pinteraction<0.05), but the sex difference in this risk was only present in participants younger than 45 years (Pinteraction<0.05).

    CONCLUSIONS:

    MAFLD greatly increased the risk of HF in women, especially young women. With increasing age, MAFLD-related risk of HF decreased and the difference between men and women disappeared.

    Footnotes

    *S. Wu and Y. Li contributed equally.

    For Sources of Funding and Disclosures, see page 155.

    Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCHEARTFAILURE.123.010841.

    Correspondence to: Shouling Wu, MD, Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, 57 Xinhua E Rd, Tangshan 063000, China, Email
    Anxin Wang, PhD, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No 119 S 4th Ring W Rd, Fengtai District, Beijing 100070, China, Email
    Yan He, PhD, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing 100069, China., Email:

    REFERENCES

    • 1. Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association.Eur J Heart Fail. 2021; 23:352–380. doi: 10.1002/ejhf.2115CrossrefMedlineGoogle Scholar
    • 2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: a report from the American Heart Association.Circulation. 2021; 143:e254–e743. doi: 10.1161/CIR.0000000000000950LinkGoogle Scholar
    • 3. Wei S, Miranda JJ, Mamas MA, Zühlke LJ, Kontopantelis E, Thabane L, Van Spall HGC. Sex differences in the etiology and burden of heart failure across country income level: analysis of 204 countries and territories 1990-2019.Eur Heart J Qual Care Clin Outcomes. 2023; 9:662–672. doi: 10.1093/ehjqcco/qcac088CrossrefMedlineGoogle Scholar
    • 4. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, Nodari S, Lam CSP, Sato N, Shah AN, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries.J Am Coll Cardiol. 2014; 63:1123–1133. doi: 10.1016/j.jacc.2013.11.053CrossrefMedlineGoogle Scholar
    • 5. Hao G, Wang X, Chen Z, Zhang L, Zhang Y, Wei B, Zheng C, Kang Y, Jiang L, Zhu Z, et al; China Hypertension Survey Investigators. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015.Eur J Heart Fail. 2019; 21:1329–1337. doi: 10.1002/ejhf.1629CrossrefMedlineGoogle Scholar
    • 6. Wang H, Chai K, Du M, Wang S, Cai JP, Li Y, Zeng P, Zhu W, Zhan S, Yang J. Prevalence and incidence of heart failure among urban patients in China: a national population-based analysis.Circ Heart Fail. 2021; 14:e008406. doi: 10.1161/CIRCHEARTFAILURE.121.008406LinkGoogle Scholar
    • 7. Sillars A, Ho FK, Pell GP, Gill JMR, Sattar N, Gray S, Celis-Morales C. Sex differences in the association of risk factors for heart failure incidence and mortality.Heart. 2020; 106:203–212. doi: 10.1136/heartjnl-2019-314878CrossrefMedlineGoogle Scholar
    • 8. Khan SS, Beach LB, Yancy CW. Sex-based differences in heart failure: JACC focus seminar 7/7.J Am Coll Cardiol. 2022; 79:1530–1541. doi: 10.1016/j.jacc.2022.02.013CrossrefMedlineGoogle Scholar
    • 9. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association.Hepatology. 2012; 55:2005–2023. doi: 10.1002/hep.25762CrossrefMedlineGoogle Scholar
    • 10. Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease.Metabolism. 2020; 111S:154170. doi: 10.1016/j.metabol.2020.154170CrossrefMedlineGoogle Scholar
    • 11. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases.Hepatology. 2018; 67:328–357. doi: 10.1002/hep.29367CrossrefMedlineGoogle Scholar
    • 12. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement.J Hepatol. 2020; 73:202–209. doi: 10.1016/j.jhep.2020.03.039CrossrefMedlineGoogle Scholar
    • 13. Lee H, Lee YH, Kim SU, Kim HC. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: a nationwide cohort study.Clin Gastroenterol Hepatol. 2021; 19:2138–2147.e10. doi: 10.1016/j.cgh.2020.12.022CrossrefMedlineGoogle Scholar
    • 14. Park J, Kim G, Kim H, Lee J, Jin SM, Kim JH. The associations between changes in hepatic steatosis and heart failure and mortality: a nationwide cohort study.Cardiovasc Diabetol. 2022; 21:287. doi: 10.1186/s12933-022-01725-zCrossrefMedlineGoogle Scholar
    • 15. Fudim M, Zhong L, Patel KV, Khera R, Abdelmalek MF, Diehl AM, McGarrah RW, Molinger J, Moylan CA, Rao VN, et al. Nonalcoholic fatty liver disease and risk of heart failure among medicare beneficiaries.J Am Heart Assoc. 2021; 10:e021654. doi: 10.1161/JAHA.121.021654LinkGoogle Scholar
    • 16. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, Jacques-Camarena O, Rodríguez-Morán M. The product of triglycerides and glucose, a simple measure of insulin sensitivity Comparison with the euglycemic-hyperinsulinemic clamp.J Clin Endocrinol Metab. 2010; 95:3347–3351. doi: 10.1210/jc.2010-0288CrossrefMedlineGoogle Scholar
    • 17. Zheng J, Zhou Y, Zhang K, Qi Y, An S, Wang S, Zhao X, Tang YD. Association between nonalcoholic fatty liver disease and subclinical atherosclerosis: a cross-sectional study on population over 40 years old.BMC Cardiovasc Disord. 2018; 18:147. doi: 10.1186/s12872-018-0877-2CrossrefMedlineGoogle Scholar
    • 18. Zheng H, Wu S, Liu X, Qiu G, Chen S, Wu Y, Li J, Yin C, Zhang Q. Association between arterial stiffness and new-onset heart failure: the Kailuan Study.Arterioscler Thromb Vasc Biol. 2023; 43:e104–e111. doi: 10.1161/ATVBAHA.122.317715LinkGoogle Scholar
    • 19. Heart Failure Group of Chinese Society of Cardiology of Chinese Medical Association; Chinese Heart Failure Association of Chinese Medical Doctor Association; Editorial Board of Chinese Journal of Cardiology. [Chinese guidelines for the diagnosis and treatment of heart failure 2018].Zhonghua Xin Xue Guan Bing Za Zhi. 2018; 46:760–789. doi: 10.3760/cma.j.issn.0253-3758.2018.10.004CrossrefMedlineGoogle Scholar
    • 20. Zhao M, Song L, Zhao Q, Chen Y, Li B, Xie Z, Fu Z, Zhang N, Cheng X, Li X, et al. Elevated levels of body mass index and waist circumference, but not high variability, are associated with an increased risk of atrial fibrillation.BMC Med. 2022; 20:215. doi: 10.1186/s12916-022-02413-1CrossrefMedlineGoogle Scholar
    • 21. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate.Ann Intern Med. 2009; 150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006CrossrefMedlineGoogle Scholar
    • 22. American Diabetes Association. 10 Cardiovascular disease and risk management: standards of Medical Care in Diabetes—2020.Diabetes Care. 2020; 43:S111–S134. doi: 10.2337/dc20-S010CrossrefMedlineGoogle Scholar
    • 23. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M, et al. 2020 International Society of Hypertension global hypertension practice guidelines.Hypertension. 2020; 75:1334–1357. doi: 10.1161/HYPERTENSIONAHA.120.15026LinkGoogle Scholar
    • 24. Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults. [Chinese guidelines on prevention and treatment of dyslipidemia in adults].Zhonghua Xin Xue Guan Bing Za Zhi. 2007; 35:390–419. doi: 10.3760/j.issn:0253-3758.2007.05.003CrossrefMedlineGoogle Scholar
    • 25. Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline.Ann Intern Med. 2013; 158:825–830. doi: 10.7326/0003-4819-158-11-201306040-00007CrossrefMedlineGoogle Scholar
    • 26. Lee CM, Yoon EL, Nakajima A, Yoneda M, Toyoda H, Yasuda S, Lee J, Kim M, Kang BK, Nguyen MH, et al. A reappraisal of the diagnostic performance of B-mode ultrasonography for mild liver steatosis.Am J Gastroenterol. 2023; 118:840–847. doi: 10.14309/ajg.0000000000002020CrossrefMedlineGoogle Scholar
    • 27. Tobari M, Hashimoto E. Characteristic features of nonalcoholic fatty liver disease in Japan with a focus on the roles of age, sex and body mass index.Gut Liver. 2020; 14:537–545. doi: 10.5009/gnl19236CrossrefMedlineGoogle Scholar
    • 28. Kim D, Konyn P, Sandhu KK, Dennis BB, Cheung AC, Ahmed A. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States.J Hepatol. 2021; 75:1284–1291. doi: 10.1016/j.jhep.2021.07.035CrossrefMedlineGoogle Scholar
    • 29. Patel NS, Doycheva I, Peterson MR, Hooker J, Kisselva T, Schnabl B, Seki E, Sirlin CB, Loomba R. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis.Clin Gastroenterol Hepatology. 2015; 13:561–568.e1. doi: 10.1016/j.cgh.2014.08.039CrossrefMedlineGoogle Scholar
    • 30. Zhou J, Bai L, Zhang XJ, Li H, Cai J. Nonalcoholic fatty liver disease and cardiac remodeling risk: pathophysiological mechanisms and clinical implications.Hepatology. 2021; 74:2839–2847. doi: 10.1002/hep.32072CrossrefMedlineGoogle Scholar
    • 31. Targher G. Relationship between high-sensitivity C-reactive protein levels and liver histology in subjects with non-alcoholic fatty liver disease.J Hepatol. 2006; 45:879–81; author reply 881. doi: 10.1016/j.jhep.2006.09.005CrossrefMedlineGoogle Scholar
    • 32. Bugianesi E. Nonalcoholic fatty liver disease (NAFLD) and cardiac lipotoxicity: another piece of the puzzle.Hepatology. 2008; 47:2–4. doi: 10.1002/hep.22105CrossrefMedlineGoogle Scholar
    • 33. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease.Circ Res. 2020; 127:553–570. doi: 10.1161/CIRCRESAHA.120.316242LinkGoogle Scholar
    • 34. Mantovani A, Byrne CD, Benfari G, Bonapace S, Simon TG, Targher G. Risk of heart failure in patients with nonalcoholic fatty liver disease: JACC review topic of the week.J Am Coll Cardiol. 2022; 79:180–191. doi: 10.1016/j.jacc.2021.11.007CrossrefMedlineGoogle Scholar
    • 35. Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort.Gut. 2022; 71:1867–1875. doi: 10.1136/gutjnl-2021-325724CrossrefMedlineGoogle Scholar
    • 36. Robeva R, Mladenović D, Vesković M, Hrnčić D, Bjekić-Macut J, Stanojlović O, Livadas S, Yildiz BO, Macut D. The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause.Maturitas. 2021; 151:22–30. doi: 10.1016/j.maturitas.2021.06.012CrossrefMedlineGoogle Scholar
    • 37. Gutierrez-Grobe Y, Ponciano-Rodríguez G, Ramos MH, Uribe M, Méndez-Sánchez N. Prevalence of non alcoholic fatty liver disease in premenopausal, posmenopausal and polycystic ovary syndrome women The role of estrogens.Ann Hepatol. 2010; 9:402–409. doi: 10.1016/s1665-2681(19)31616-3CrossrefMedlineGoogle Scholar
    • 38. Balakrishnan M, Patel P, Dunn-Valadez S, Dao C, Khan V, Ali H, El-Serag L, Hernaez R, Sisson A, Thrift AP, et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of progression vs men: a systematic review and meta-analysis.Clin Gastroenterol Hepatol2021; 19:61–71.e15. doi: 10.1016/j.cgh.2020.04.067CrossrefMedlineGoogle Scholar
    • 39. Alqahtani SA, Paik JM, Biswas R, Arshad T, Henry L, Younossi ZM. Poor awareness of liver disease among adults with NAFLD in the United States.Hepatology Commun. 2021; 5:1833–1847. doi: 10.1002/hep4.1765CrossrefMedlineGoogle Scholar
    • 40. Kim D, Choi SY, Park EH, Lee W, Kang JH, Kim W, Kim YJ, Yoon JH, Jeong SH, Lee DH, et al. Nonalcoholic fatty liver disease is associated with coronary artery calcification.Hepatology. 2012; 56:605–613. doi: 10.1002/hep.25593CrossrefMedlineGoogle Scholar
    • 41. Mantovani A, Petracca G, Csermely A, Beatrice G, Bonapace S, Rossi A, Tilg H, Byrne CD, Targher G. Non-alcoholic fatty liver disease and risk of new-onset heart failure: an updated meta-analysis of about 11 million individuals.Gut. 2023; 72:372–380. doi: 10.1136/gutjnl-2022-327672CrossrefGoogle Scholar