Skip main navigation

Risk Factors and Outcomes Associated With Heart Failure With Preserved and Reduced Ejection Fraction in People With Chronic Kidney Disease

Originally publishedhttps://doi.org/10.1161/CIRCHEARTFAILURE.123.011173Circulation: Heart Failure. 2024;17

BACKGROUND:

Heart failure (HF) is associated with poor outcomes in people with chronic kidney disease, yet it is unknown whether outcomes differ by HF subtype. This study aimed to examine associations of incident HF with preserved ejection fraction (HFpEF) versus HF with reduced ejection fraction (HFrEF) with progression to end-stage kidney disease (ESKD) and mortality.

METHODS:

We studied individuals with chronic kidney disease in the CRIC study (Chronic Renal Insufficiency Cohort) who were free of HF at cohort entry. Incident HF hospitalizations were adjudicated and classified into HFpEF (ejection fraction, ≥50%) or HFrEF (ejection fraction, <50%) based on echocardiograms performed during the hospitalization or at a research study visit. ESKD was defined as need for chronic dialysis or kidney transplant. Cox proportional hazards were used to evaluate the association of time-updated HF subtype with risk of ESKD and mortality, adjusting for demographics, comorbidities, and medication use.

RESULTS:

Among the 3557 study participants without HF at cohort entry, mean age was 57 years and mean estimated glomerular filtration rate was 45 mL/min per 1.73 m2. A total of 682 participants had incident HF. Incidence rates for HFpEF and HFrEF were 0.9 (95% CI, 0.8–1.0) and 0.7 (95% CI, 0.6–0.8) per 100 person-years, respectively (Pdifference=0.005). Associations of incident HF with progression to ESKD were not statistically different for HFpEF (hazard ratio, 2.06 [95% CI, 1.66–2.56]) and HFrEF (hazard ratio, 1.80 [95% CI, 1.36–2.38]; P=0.42). The associations with mortality were stronger for HFrEF (hazard ratio, 2.73 [95% CI, 2.24–3.33]) compared with HFpEF (hazard ratio, 1.99 [95% CI, 1.65–2.40]; P=0.0002).

CONCLUSIONS:

In a chronic kidney disease population, the rates of HFpEF hospitalizations were greater than that of HFrEF. Risk of ESKD was high but not statically different across HF subtypes. There was a stronger association of HFrEF with mortality. Prevention and treatment of both HFpEF and HFrEF should be central priorities to improve outcomes in chronic kidney disease.

Footnotes

For Sources of Funding and Disclosures, see page 447.

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCHEARTFAILURE.123.011173.

Correspondence to: Nisha Bansal, MD, Division of Nephrology, University of Washington, 908 Jefferson St, 3rd Floor, Seattle, WA 98104. Email

REFERENCES

  • 1. Bansal N, Katz R, Robinson-Cohen C, Odden MC, Dalrymple L, Shlipak MG, Sarnak MJ, Siscovick DS, Zelnick L, Psaty BM, et al. Absolute rates of heart failure, coronary heart disease, and stroke in chronic kidney disease: an analysis of 3 community-based cohort studies.JAMA cardiology. 2017; 2:314–318. doi: 10.1001/jamacardio.2016.4652CrossrefMedlineGoogle Scholar
  • 2. Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, Chambless LE, Coresh J. Reduced kidney function as a risk factor for incident heart failure: the Atherosclerosis Risk in Communities (ARIC) study.J Am Soc Nephrol. 2007; 18:1307–1315. doi: 10.1681/ASN.2006101159CrossrefMedlineGoogle Scholar
  • 3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.N Engl J Med. 2004; 351:1296–1305. doi: 10.1056/NEJMoa041031CrossrefMedlineGoogle Scholar
  • 4. Bansal N, Katz R, Robinson-Cohen C, Odden MC, Dalrymple L, Shlipak MG, Sarnak MJ, Siscovick DS, Zelnick L, Psaty BM, et al. Absolute rates of heart failure, coronary heart disease, and stroke in chronic kidney disease: an analysis of 3 community-based cohort studies.JAMA cardiology. 2017; 2:314–318. doi: 10.1001/jamacardio.2016.4652CrossrefMedlineGoogle Scholar
  • 5. USRDS annual data report: epidemiology of kidney disease in the United States.Accessed December 2, 2024. https://usrds-adr.niddk.nih.gov/2023Google Scholar
  • 6. Harel Z, Wald R, McArthur E, Chertow GM, Harel S, Gruneir A, Fischer HD, Garg AX, Perl J, Nash DM, et al. Rehospitalizations and emergency department visits after hospital discharge in patients receiving maintenance hemodialysis.J Am Soc Nephrol. 2015; 26:3141–3150. doi: 10.1681/ASN.2014060614CrossrefMedlineGoogle Scholar
  • 7. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management.Nat Rev Nephrol. 2016; 12:610–623. doi: 10.1038/nrneph.2016.113CrossrefMedlineGoogle Scholar
  • 8. Bansal N, Zelnick L, Bhat Z, Dobre M, He J, Lash J, Jaar B, Mehta R, Raj D, Rincon-Choles H, et al; CRIC Study Investigators. Burden and outcomes of heart failure hospitalizations in adults with chronic kidney disease.J Am Coll Cardiol. 2019; 73:2691–2700. doi: 10.1016/j.jacc.2019.02.071CrossrefMedlineGoogle Scholar
  • 9. Borlaug BA, Sharma K, Shah SJ, Ho JE. Heart failure with preserved ejection fraction: JACC scientific statement.J Am Coll Cardiol. 2023; 81:1810–1834. doi: 10.1016/j.jacc.2023.01.049CrossrefMedlineGoogle Scholar
  • 10. Desai AS, Lam CSP, McMurray JJV, Redfield MM. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians.JACC Heart Fail. 2023; 11:619–636. doi: 10.1016/j.jchf.2023.03.011CrossrefMedlineGoogle Scholar
  • 11. Feldman HI, Appel LJ, Chertow GM, Cifelli D, Cizman B, Daugirdas J, Fink JC, Franklin-Becker ED, Go AS, Hamm LL, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. The Chronic Renal Insufficiency Cohort (CRIC) study: design and methods.J Am Soc Nephrol. 2003; 14:S148–S153. doi: 10.1097/01.asn.0000070149.78399.ceCrossrefMedlineGoogle Scholar
  • 12. Lash JP, Go AS, Appel LJ, He J, Ojo A, Rahman M, Townsend RR, Xie D, Cifelli D, Cohan J, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Group. Chronic Renal Insufficiency Cohort (CRIC) study: baseline characteristics and associations with kidney function.Clin J Am Soc Nephrol. 2009; 4:1302–1311. doi: 10.2215/CJN.00070109CrossrefMedlineGoogle Scholar
  • 13. Bansal N, Roy J, Chen HY, Deo R, Dobre M, Fischer MJ, Foster E, Go AS, He J, Keane MG, et al; CRIC Study Investigators. Evolution of echocardiographic measures of cardiac disease from CKD to ESRD and risk of all-cause mortality: findings from the CRIC study.Am J Kidney Dis. 2018; 72:390–399. doi: 10.1053/j.ajkd.2018.02.363CrossrefMedlineGoogle Scholar
  • 14. Bansal N, Keane M, Delafontaine P, Dries D, Foster E, Gadegbeku CA, Go AS, Hamm LL, Kusek JW, Ojo AO, et al; CRIC Study Investigators. A longitudinal study of left ventricular function and structure from CKD to ESRD: the CRIC study.Clin J Am Soc Nephrol. 2013; 8:355–362. doi: 10.2215/CJN.06020612CrossrefMedlineGoogle Scholar
  • 15. National Center for Health Statistics (NCHS). National health and nutrition examination survey anthropometry procedures manual. Centers for Disease Control and Prevention [serial online] 2000.Accessed December 2, 2024. https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdfGoogle Scholar
  • 16. Joffe M, Hsu CY, Feldman HI, Weir M, Landis JR, Hamm LL; Chronic Renal Insufficiency Cohort (CRIC) Study Group. Variability of creatinine measurements in clinical laboratories: results from the CRIC study.Am J Nephrol. 2010; 31:426–434. doi: 10.1159/000296250CrossrefMedlineGoogle Scholar
  • 17. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F; Chronic Kidney Disease Epidemiology Collaboration. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values.Clin Chem. 2007; 53:766–772. doi: 10.1373/clinchem.2006.077180CrossrefMedlineGoogle Scholar
  • 18. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, Crews DC, Doria A, Estrella MM, Froissart M, et al; Chronic Kidney Disease Epidemiology Collaboration. New creatinine- and cystatin C-based equations to estimate GFR without race.N Engl J Med. 2021; 385:1737–1749. doi: 10.1056/NEJMoa2102953CrossrefMedlineGoogle Scholar
  • 19. https://kdigo.org/guidelines/. Accessed April 8, 2024.Google Scholar
  • 20. Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions.J Am Stat Assoc. 1989; 84:1065–1073. doi: 10.2307/2290084CrossrefGoogle Scholar
  • 21. Gerber Y, Weston SA, Redfield MM, Chamberlain AM, Manemann SM, Jiang R, Killian JM, Roger VL. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010.JAMA Intern Med. 2015; 175:996–1004. doi: 10.1001/jamainternmed.2015.0924CrossrefMedlineGoogle Scholar
  • 22. Bhambhani V, Kizer JR, Lima JAC, van der Harst P, Bahrami H, Nayor M, de Filippi CR, Enserro D, Blaha MJ, Cushman M, et al. Predictors and outcomes of heart failure with mid-range ejection fraction.Eur J Heart Fail. 2018; 20:651–659. doi: 10.1002/ejhf.1091CrossrefMedlineGoogle Scholar
  • 23. Yu AS, Pak KJ, Zhou H, Shaw SF, Shi J, Broder BI, Sim JJ. All-cause and cardiovascular-related mortality in CKD patients with and without heart failure: a population-based cohort study in Kaiser permanente Southern California.Kidney Med. 2023; 5:100624. doi: 10.1016/j.xkme.2023.100624CrossrefMedlineGoogle Scholar
  • 24. Lofman I, Szummer K, Dahlstrom U, Jernberg T, Lund LH. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction.Eur J Heart Fail. 2017; 19:1606–1614. doi: 10.1002/ejhf.821CrossrefMedlineGoogle Scholar
  • 25. Peters AE, Tromp J, Shah SJ, Lam CSP, Lewis GD, Borlaug BA, Sharma K, Pandey A, Sweitzer NK, Kitzman DW, et al. Phenomapping in heart failure with preserved ejection fraction: insights, limitations, and future directions.Cardiovasc Res. 2023; 118:3403–3415. doi: 10.1093/cvr/cvac179CrossrefMedlineGoogle Scholar
  • 26. Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction.Heart Fail Clin. 2014; 10:407–418. doi: 10.1016/j.hfc.2014.04.008CrossrefMedlineGoogle Scholar
  • 27. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC, Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction.Circulation. 2015; 131:269–279. doi: 10.1161/CIRCULATIONAHA.114.010637LinkGoogle Scholar
  • 28. Doshi SM, Wish JB. Past, present, and future of phosphate management.Kidney Int Rep. 2022; 7:688–698. doi: 10.1016/j.ekir.2022.01.1055CrossrefMedlineGoogle Scholar
  • 29. Ray M, Jovanovich A. Mineral bone abnormalities and vascular calcifications.Adv Chronic Kidney Dis. 2019; 26:409–416. doi: 10.1053/j.ackd.2019.09.004CrossrefMedlineGoogle Scholar
  • 30. Villa-Bellosta R. Vascular calcification: key roles of phosphate and pyrophosphate.Int J Mol Sci. 2021; 22:13536. doi: 10.3390/ijms222413536CrossrefMedlineGoogle Scholar
  • 31. Grabner A, Faul C. The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy.Curr Opin Nephrol Hypertens. 2016; 25:314–324. doi: 10.1097/MNH.0000000000000231CrossrefMedlineGoogle Scholar
  • 32. Navarro-García JA, Fernández-Velasco M, Delgado C, Delgado JF, Kuro OM, Ruilope LM, Ruiz-Hurtado G. PTH, vitamin D, and the FGF-23-klotho axis and heart: going beyond the confines of nephrology.Eur J Clin Invest. 2018; 48: doi: 10.1111/eci.12902CrossrefMedlineGoogle Scholar
  • 33. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, et al. FGF23 induces left ventricular hypertrophy.J Clin Invest. 2011; 121:4393–4408. doi: 10.1172/JCI46122CrossrefMedlineGoogle Scholar
  • 34. Sud M, Tangri N, Pintilie M, Levey AS, Naimark DM. ESRD and death after heart failure in CKD.J Am Soc Nephrol. 2015; 26:715–722. doi: 10.1681/ASN.2014030253CrossrefMedlineGoogle Scholar
  • 35. He J, Shlipak M, Anderson A, Roy JA, Feldman HI, Kallem RR, Kanthety R, Kusek JW, Ojo A, Rahman M, et al. Risk factors for heart failure in patients with chronic kidney disease: the CRIC (Chronic Renal Insufficiency Cohort) study.J Am Heart Assoc. 2017; 6:e005336doi: 10.1161/jaha.116.005336LinkGoogle Scholar
  • 36. Michowitz Y, Goldstein E, Wexler D, Sheps D, Keren G, George J. Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure.Heart. 2007; 93:1046–1050. doi: 10.1136/hrt.2006.102657CrossrefMedlineGoogle Scholar
  • 37. Bansal N, Katz R, Dalrymple L, de Boer I, DeFilippi C, Kestenbaum B, Park M, Sarnak M, Seliger S, Shlipak M. NT-proBNP and troponin T and risk of rapid kidney function decline and incident CKD in elderly adults.Clin J Am Soc Nephrol. 2015; 10:205–214. doi: 10.2215/CJN.04910514CrossrefMedlineGoogle Scholar
  • 38. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, Lewis JB, Riddle MC, Voors AA, Metra M, et al; SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure.N Engl J Med. 2021; 384:117–128. doi: 10.1056/NEJMoa2030183CrossrefMedlineGoogle Scholar
  • 39. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, et al; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction.N Engl J Med. 2019; 381:1995–2008. doi: 10.1056/NEJMoa1911303CrossrefMedlineGoogle Scholar
  • 40. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, et al; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure.N Engl J Med. 2020; 383:1413–1424. doi: 10.1056/NEJMoa2022190CrossrefMedlineGoogle Scholar
  • 41. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, et al; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.N Engl J Med. 2019; 380:2295–2306. doi: 10.1056/NEJMoa1811744CrossrefMedlineGoogle Scholar
  • 42. Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Martinez F, et al; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction.N Engl J Med. 2022; 387:1089–1098. doi: 10.1056/NEJMoa2206286CrossrefMedlineGoogle Scholar
  • 43. Smith DH, Thorp ML, Gurwitz JH, McManus DD, Goldberg RJ, Allen LA, Hsu G, Sung SH, Magid DJ, Go AS. Chronic kidney disease and outcomes in heart failure with preserved versus reduced ejection fraction: the cardiovascular research network PRESERVE Study.Circ Cardiovasc Qual Outcomes. 2013; 6:333–342. doi: 10.1161/CIRCOUTCOMES.113.000221LinkGoogle Scholar
  • 44. Patel RB, Fonarow GC, Greene SJ, Zhang S, Alhanti B, DeVore AD, Butler J, Heidenreich PA, Huang JC, Kittleson MM, et al. Kidney function and outcomes in patients hospitalized with heart failure.J Am Coll Cardiol. 2021; 78:330–343. doi: 10.1016/j.jacc.2021.05.002CrossrefMedlineGoogle Scholar
  • 45. Xie Y, Bowe B, Gibson AK, McGill JB, Maddukuri G, Al-Aly Z. Clinical implications of estimated glomerular filtration rate dip following sodium-glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes.J Am Heart Assoc. 2021; 10:e020237. doi: 10.1161/JAHA.120.020237LinkGoogle Scholar
  • 46. McCallum W, Tighiouart H, Ku E, Salem D, Sarnak MJ. Trends in kidney function outcomes following RAAS inhibition in patients with heart failure with reduced ejection fraction.Am J Kidney Dis. 2020; 75:21–29. doi: 10.1053/j.ajkd.2019.05.010CrossrefMedlineGoogle Scholar
  • 47. Bansal N, Zelnick L, Go A, Anderson A, Christenson R, Deo R, Defilippi C, Lash J, He J, Ky B, et al; CRIC Study Investigators. Cardiac biomarkers and risk of incident heart failure in chronic kidney disease: the CRIC (Chronic Renal Insufficiency Cohort) study.J Am Heart Assoc. 2019; 8:e012336. doi: 10.1161/JAHA.119.012336LinkGoogle Scholar
  • 48. Leidner AS, Cai X, Zelnick LR, Lee J, Bansal N, Pasch A, Kansal M, Chen J, Anderson AH, Sondheimer JH, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor 23 and risk of heart failure subtype: the CRIC (Chronic Renal Insufficiency Cohort) study.Kidney Med. 2023; 5:100723. doi: 10.1016/j.xkme.2023.100723CrossrefMedlineGoogle Scholar
  • 49. Zelnick LR, Shlipak MG, Soliman EZ, Anderson A, Christenson R, Kansal M, Deo R, He J, Jaar BG, Weir MR, et al; CRIC Study Investigators. Prediction of incident heart failure in CKD: the CRIC study.Kidney Int Rep. 2022; 7:708–719. doi: 10.1016/j.ekir.2022.01.1067CrossrefMedlineGoogle Scholar