Skip main navigation

Brain α2δ-1–Bound NMDA Receptors Drive Calcineurin Inhibitor–Induced Hypertension

Originally published Research. 2023;133:611–627


Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor–induced synaptic NMDAR hyperactivity in the PVN and hypertension development.


Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states.


Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice.


α2δ-1 is essential for calcineurin inhibitor–induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor–induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor–induced neurogenic hypertension.


For Sources of Funding and Disclosures, see page 625.

Supplemental Material is available at

Correspondence to: Hui-Lin Pan, MD, PhD, Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030. Email


  • 1. Scherrer U, Vissing SF, Morgan BJ, Rollins JA, Tindall RS, Ring S, Hanson P, Mohanty PK, Victor RG. Cyclosporine-induced sympathetic activation and hypertension after heart transplantation.N Engl J Med. 1990; 323:693–699. doi: 10.1056/NEJM199009133231101CrossrefMedlineGoogle Scholar
  • 2. Textor SC, Canzanello VJ, Taler SJ, Wilson DJ, Schwartz LL, Augustine JE, Raymer JM, Romero JC, Wiesner RH, Krom RA. Cyclosporine-induced hypertension after transplantation.Mayo Clin Proc. 1994; 69:1182–1193. doi: 10.1016/s0025-6196(12)65772-3CrossrefMedlineGoogle Scholar
  • 3. Mange KC, Cizman B, Joffe M, Feldman HI. Arterial hypertension and renal allograft survival.JAMA. 2000; 283:633–638. doi: 10.1001/jama.283.5.633CrossrefMedlineGoogle Scholar
  • 4. Koomans HA, Ligtenberg G. Mechanisms and consequences of arterial hypertension after renal transplantation.Transplantation. 2001; 72:S9–12. doi: 10.1097/00007890-200109271-00004CrossrefMedlineGoogle Scholar
  • 5. Zhou JJ, Shao JY, Chen SR, Pan HL. Calcineurin controls hypothalamic NMDA receptor activity and sympathetic outflow.Circ Res. 2022; 131:345–360. doi: 10.1161/CIRCRESAHA.122.320976LinkGoogle Scholar
  • 6. Moss NG, Powell SL, Falk RJ. Intravenous cyclosporine activates afferent and efferent renal nerves and causes sodium retention in innervated kidneys in rats.Proc Natl Acad Sci U S A. 1985; 82:8222–8226. doi: 10.1073/pnas.82.23.8222CrossrefMedlineGoogle Scholar
  • 7. Chiu PJ, Vemulapalli S, Sabin C, Rivelli M, Bernardino V, Sybertz EJ. Sympathoadrenal stimulation, not endothelin, plays a role in acute pressor response to cyclosporine in anesthetized rats.J Pharmacol Exp Ther. 1992; 261:994–999.MedlineGoogle Scholar
  • 8. Kasiske BL, Anjum S, Shah R, Skogen J, Kandaswamy C, Danielson B, O’Shaughnessy EA, Dahl DC, Silkensen JR, Sahadevan M, et al. Hypertension after kidney transplantation.Am J Kidney Dis. 2004; 43:1071–1081. doi: 10.1053/j.ajkd.2004.03.013CrossrefMedlineGoogle Scholar
  • 9. El-Mas MM, Omar AG, Helmy MM, Mohy El-Din MM. Interruption of central neuronal pathway of imidazoline I1 receptor mediates the hypertensive effect of cyclosporine in rats.Brain Res. 2009; 1248:96–106. doi: 10.1016/j.brainres.2008.11.008CrossrefMedlineGoogle Scholar
  • 10. Morgan BJ, Lyson T, Scherrer U, Victor RG. Cyclosporine causes sympathetically mediated elevations in arterial pressure in rats.Hypertension. 1991; 18:458–466. doi: 10.1161/01.hyp.18.4.458LinkGoogle Scholar
  • 11. Grobecker HF, Riebel K, Wellenhofer T. Cyclosporine A-induced hypertension in SHR and WKY: role of the sympatho-adrenal system.Clin Exp Pharmacol Physiol Suppl. 1995; 22:S94–S95. doi: 10.1111/j.1440-1681.1995.tb02984.xCrossrefMedlineGoogle Scholar
  • 12. Li DP, Pan HL. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension.Hypertension. 2007; 49:916–925. doi: 10.1161/01.HYP.0000259666.99449.74LinkGoogle Scholar
  • 13. Zhou JJ, Shao JY, Chen SR, Li DP, Pan HL. α2δ-1–dependent NMDA receptor activity in the hypothalamus is an effector of genetic-environment interactions that drive persistent hypertension.J Neurosci. 2021; 41:6551–6563. doi: 10.1523/JNEUROSCI.0346-21.2021CrossrefMedlineGoogle Scholar
  • 14. Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states.Am J Physiol Heart Circ Physiol. 2018; 315:H1200–H1214. doi: 10.1152/ajpheart.00216.2018CrossrefMedlineGoogle Scholar
  • 15. Ranson RN, Motawei K, Pyner S, Coote JH. The paraventricular nucleus of the hypothalamus sends efferents to the spinal cord of the rat that closely appose sympathetic preganglionic neurones projecting to the stellate ganglion.Exp Brain Res. 1998; 120:164–172. doi: 10.1007/s002210050390CrossrefMedlineGoogle Scholar
  • 16. Pyner S, Coote JH. Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord.Neuroscience. 2000; 100:549–556. doi: 10.1016/s0306-4522(00)00283-9CrossrefMedlineGoogle Scholar
  • 17. Tong G, Shepherd D, Jahr CE. Synaptic desensitization of NMDA receptors by calcineurin.Science. 1995; 267:1510–1512. doi: 10.1126/science.7878472CrossrefMedlineGoogle Scholar
  • 18. Huang Y, Chen SR, Pan HL. Calcineurin regulates synaptic plasticity and nociceptive transmission at the spinal cord level.Neuroscientist. 2022; 28:628–638. doi: 10.1177/10738584211046888CrossrefMedlineGoogle Scholar
  • 19. Chen SR, Hu YM, Chen H, Pan HL. Calcineurin inhibitor induces pain hypersensitivity by potentiating pre- and postsynaptic NMDA receptor activity in spinal cords.J Physiol. 2014; 592:215–227. doi: 10.1113/jphysiol.2013.263814CrossrefMedlineGoogle Scholar
  • 20. Li DP, Byan HS, Pan HL. Switch to glutamate receptor 2-lacking AMPA receptors increases neuronal excitability in hypothalamus and sympathetic drive in hypertension.J Neurosci. 2012; 32:372–380. doi: 10.1523/JNEUROSCI.3222-11.2012CrossrefMedlineGoogle Scholar
  • 21. Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N, Tanaka C. Distinct cellular expression of calcineurin A alpha and A beta in rat brain.J Neurochem. 1992; 58:1643–1651. doi: 10.1111/j.1471-4159.1992.tb10036.xCrossrefMedlineGoogle Scholar
  • 22. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors.J Gen Physiol. 2018; 150:1081–1105. doi: 10.1085/jgp.201812032CrossrefMedlineGoogle Scholar
  • 23. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration.Pflugers Arch. 2010; 460:525–542. doi: 10.1007/s00424-010-0809-1CrossrefMedlineGoogle Scholar
  • 24. Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias.Clin Interv Aging. 2009; 4:367–377. doi: 10.2147/cia.s6666CrossrefMedlineGoogle Scholar
  • 25. Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y, Zhou MH, Jayaraman V, et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions.Cell Rep. 2018; 22:2307–2321. doi: 10.1016/j.celrep.2018.02.021CrossrefMedlineGoogle Scholar
  • 26. Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein kinase C-mediated phosphorylation and α2δ-1 interdependently regulate NMDA receptor trafficking and activity.J Neurosci. 2021; 41:6415–6429. doi: 10.1523/JNEUROSCI.0757-21.2021CrossrefMedlineGoogle Scholar
  • 27. Ma H, Chen SR, Chen H, Zhou JJ, Li DP, Pan HL. α2δ-1 couples to NMDA receptors in the hypothalamus to sustain sympathetic vasomotor activity in hypertension.J Physiol. 2018; 596:4269–4283. doi: 10.1113/JP276394CrossrefMedlineGoogle Scholar
  • 28. Huang Y, Chen SR, Chen H, Luo Y, Pan HL. Calcineurin inhibition causes α2δ-1–mediated tonic activation of synaptic NMDA receptors and pain hypersensitivity.J Neurosci. 2020; 40:3707–3719. doi: 10.1523/JNEUROSCI.0282-20.2020CrossrefMedlineGoogle Scholar
  • 29. Ma H, Chen SR, Chen H, Pan HL. Endogenous AT1 receptor-protein kinase C activity in the hypothalamus augments glutamatergic input and sympathetic outflow in hypertension.J Physiol. 2019; 597:4325–4340. doi: 10.1113/JP278427CrossrefMedlineGoogle Scholar
  • 30. Ma H, Chen SR, Chen H, Li L, Li DP, Zhou JJ, Pan HL. α2δ-1 is essential for sympathetic output and NMDA receptor activity potentiated by angiotensin II in the hypothalamus.J Neurosci. 2018; 38:6388–6398. doi: 10.1523/JNEUROSCI.0447-18.2018CrossrefMedlineGoogle Scholar
  • 31. Li DP, Chen SR, Pan HL. Angiotensin II stimulates spinally projecting paraventricular neurons through presynaptic disinhibition.J Neurosci. 2003; 23:5041–5049. doi: 10.1523/JNEUROSCI.23-12-05041.2003CrossrefMedlineGoogle Scholar
  • 32. Li DP, Yang Q, Pan HM, Pan HL. Pre- and postsynaptic plasticity underlying augmented glutamatergic inputs to hypothalamic presympathetic neurons in spontaneously hypertensive rats.J Physiol. 2008; 586:1637–1647. doi: 10.1113/jphysiol.2007.149732CrossrefMedlineGoogle Scholar
  • 33. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel.J Biol Chem. 1996; 271:5768–5776. doi: 10.1074/jbc.271.10.5768CrossrefMedlineGoogle Scholar
  • 34. Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, Muth JN, Mikala G, Petrashevskaya NN, Jordan MA, et al. Targeted disruption of the voltage-dependent calcium channel α2δ-1-subunit.Am J Physiol Heart Circ Physiol. 2009; 297:H117–H124. doi: 10.1152/ajpheart.00122.2009CrossrefMedlineGoogle Scholar
  • 35. Luo Y, Ma H, Zhou JJ, Li L, Chen SR, Zhang J, Chen L, Pan HL. Focal cerebral ischemia and reperfusion induce brain injury through α2δ-1-bound NMDA receptors.Stroke. 2018; 49:2464–2472. doi: 10.1161/STROKEAHA.118.022330LinkGoogle Scholar
  • 36. Ye ZY, Li DP, Li L, Pan HL. Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension.J Neurosci. 2011; 31:8271–8279. doi: 10.1523/JNEUROSCI.1147-11.2011CrossrefMedlineGoogle Scholar
  • 37. Jin D, Chen H, Chen SR, Pan HL. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens.J Neurochem. 2022; 164:143–157. doi: 10.1111/jnc.15706CrossrefMedlineGoogle Scholar
  • 38. Zhang GF, Chen SR, Jin D, Huang Y, Chen H, Pan HL. α2δ-1 upregulation in primary sensory neurons promotes NMDA receptor-mediated glutamatergic input in resiniferatoxin-induced neuropathy.J Neurosci. 2021; 41:5963–5978. doi: 10.1523/JNEUROSCI.0303-21.2021CrossrefMedlineGoogle Scholar
  • 39. Zhang J, Chen SR, Zhou MH, Jin D, Chen H, Wang L, DePinho RA, Pan HL. HDAC2 in primary sensory neurons constitutively restrains chronic pain by repressing α2δ-1 expression and associated NMDA receptor activity.J Neurosci. 2022; 42:8918–8935. doi: 10.1523/JNEUROSCI.0735-22.2022CrossrefMedlineGoogle Scholar
  • 40. Pan HL, Eisenach JC, Chen SR. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats.J Pharmacol Exp Ther. 1999; 288:1026–1030.MedlineGoogle Scholar
  • 41. Chen SR, Samoriski G, Pan HL. Antinociceptive effects of chronic administration of uncompetitive NMDA receptor antagonists in a rat model of diabetic neuropathic pain.Neuropharmacology. 2009; 57:121–126. doi: 10.1016/j.neuropharm.2009.04.010CrossrefMedlineGoogle Scholar
  • 42. Murakami Y, Takamatsu H, Noda A, Osoda K, Ichise R, Tatsumi M, Tabata K, Sawamoto T, Nishimura S. Pharmacokinetic animal PET study of FK506 as a potent neuroprotective agent.J Nucl Med. 2004; 45:1946–1949.MedlineGoogle Scholar
  • 43. Gottschalk S, Cummins CL, Leibfritz D, Christians U, Benet LZ, Serkova NJ. Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism.Neurotoxicology. 2011; 32:50–57. doi: 10.1016/j.neuro.2010.10.006CrossrefMedlineGoogle Scholar
  • 44. Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS. Trafficking of NMDA receptors.Annu Rev Pharmacol Toxicol. 2003; 43:335–358. doi: 10.1146/annurev.pharmtox.43.100901.135803CrossrefMedlineGoogle Scholar
  • 45. Tétreault MP, Bourdin B, Briot J, Segura E, Lesage S, Fiset C, Parent L. Identification of glycosylation sites essential for surface expression of the CaVα2δ1 subunit and modulation of the cardiac CaV1.2 channel activity.J Biol Chem. 2016; 291:4826–4843. doi: 10.1074/jbc.M115.692178CrossrefMedlineGoogle Scholar
  • 46. Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL. The α2δ-1-NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory.J Biol Chem. 2018; 293:19354–19364. doi: 10.1074/jbc.RA118.003977CrossrefMedlineGoogle Scholar
  • 47. Li DP, Zhu LH, Pachuau J, Lee HA, Pan HL. mGluR5 Upregulation increases excitability of hypothalamic presympathetic neurons through NMDA receptor trafficking in spontaneously hypertensive rats.J Neurosci. 2014; 34:4309–4317. doi: 10.1523/JNEUROSCI.4295-13.2014CrossrefMedlineGoogle Scholar
  • 48. Qiao X, Zhou JJ, Li DP, Pan HL. Src kinases regulate glutamatergic input to hypothalamic presympathetic neurons and sympathetic outflow in hypertension.Hypertension. 2017; 69:154–162. doi: 10.1161/HYPERTENSIONAHA.116.07947LinkGoogle Scholar
  • 49. Rock DM, Kelly KM, Macdonald RL. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons.Epilepsy Res. 1993; 16:89–98. doi: 10.1016/0920-1211(93)90023-zCrossrefMedlineGoogle Scholar
  • 50. Schumacher TB, Beck H, Steinhäuser C, Schramm J, Elger CE. Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy.Epilepsia. 1998; 39:355–363. doi: 10.1111/j.1528-1157.1998.tb01387.xCrossrefMedlineGoogle Scholar
  • 51. Brown JT, Randall A. Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro.Synapse. 2005; 55:262–269. doi: 10.1002/syn.20115CrossrefMedlineGoogle Scholar
  • 52. Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain.J Neurochem. 2019; 148:252–274. doi: 10.1111/jnc.14627CrossrefMedlineGoogle Scholar
  • 53. Taylor CP, Harris EW. Analgesia with gabapentin and pregabalin may involve N-Methyl-d-Aspartate receptors, neurexins, and thrombospondins.J Pharmacol Exp Ther. 2020; 374:161–174. doi: 10.1124/jpet.120.266056CrossrefMedlineGoogle Scholar
  • 54. Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleicher L, Varney MA, Gu G. Differential distribution of voltage-gated calcium channel α2δ subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia.J Comp Neurol. 2005; 491:246–269. doi: 10.1002/cne.20693CrossrefMedlineGoogle Scholar
  • 55. Taylor CP, Garrido R. Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (alpha2-delta) type 1 protein.Neuroscience. 2008; 155:510–521. doi: 10.1016/j.neuroscience.2008.05.053CrossrefMedlineGoogle Scholar
  • 56. Hendel MD, Collister JP. Contribution of the subfornical organ to angiotensin II-induced hypertension.Am J Physiol Heart Circ Physiol. 2005; 288:H680–H685. doi: 10.1152/ajpheart.00823.2004CrossrefMedlineGoogle Scholar
  • 57. Stocker SD, Wenner MM, Farquhar WB, Browning KN. Activation of the organum vasculosum of the lamina terminalis produces a sympathetically mediated hypertension.Hypertension. 2022; 79:139–149. doi: 10.1161/HYPERTENSIONAHA.121.18117LinkGoogle Scholar
  • 58. Briant LJ, Charkoudian N, Hart EC. Sympathetic regulation of blood pressure in normotension and hypertension: when sex matters.Exp Physiol. 2016; 101:219–229. doi: 10.1113/EP085368CrossrefMedlineGoogle Scholar
  • 59. Hönack D, Löscher W. Sex differences in NMDA receptor mediated responses in rats.Brain Res. 1993; 620:167–170. doi: 10.1016/0006-8993(93)90287-wCrossrefMedlineGoogle Scholar
  • 60. Meyer-Lehnert H, Schrier RW. Potential mechanism of cyclosporine A-induced vascular smooth muscle contraction.Hypertension. 1989; 13:352–360. doi: 10.1161/01.hyp.13.4.352LinkGoogle Scholar
  • 61. Curtis JJ, Luke RG, Jones P, Diethelm AG. Hypertension in cyclosporine-treated renal transplant recipients is sodium dependent.Am J Med. 1988; 85:134–138. doi: 10.1016/s0002-9343(88)80331-0CrossrefMedlineGoogle Scholar
  • 62. DiBona GF. Sympathetic nervous system influences on the kidney. Role in hypertension.Am J Hypertens. 1989; 2:119S–124S. doi: 10.1093/ajh/2.3.119sCrossrefMedlineGoogle Scholar
  • 63. Pontes RB, Crajoinas RO, Nishi EE, Oliveira-Sales EB, Girardi AC, Campos RR, Bergamaschi CT. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor.Am J Physiol Renal Physiol. 2015; 308:F848–F856. doi: 10.1152/ajprenal.00515.2014CrossrefMedlineGoogle Scholar
  • 64. Zhang W, Victor RG. Calcineurin inhibitors cause renal afferent activation in rats: a novel mechanism of cyclosporine-induced hypertension.Am J Hypertens. 2000; 13:999–1004. doi: 10.1016/s0895-7061(00)00288-0CrossrefMedlineGoogle Scholar
  • 65. Li DP, Zhou JJ, Zhang J, Pan HL. CaMKII regulates synaptic NMDA receptor activity of hypothalamic presympathetic neurons and sympathetic outflow in hypertension.J Neurosci. 2017; 37:10690–10699. doi: 10.1523/JNEUROSCI.2141-17.2017CrossrefMedlineGoogle Scholar
  • 66. Ye ZY, Li DP, Byun HS, Li L, Pan HL. NKCC1 upregulation disrupts chloride homeostasis in the hypothalamus and increases neuronal activitysympathetic drive in hypertension.J Neurosci. 2012; 32:8560–8568. doi: 10.1523/JNEUROSCI.1346-12.2012CrossrefMedlineGoogle Scholar
  • 67. Silva LEV, Geraldini VR, de Oliveira BP, Silva CAA, Porta A, Fazan R. Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat.Sci Rep. 2017; 7:8428. doi: 10.1038/s41598-017-08888-wCrossrefMedlineGoogle Scholar
  • 68. Baudrie V, Laude D, Elghozi JL. Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice.Am J Physiol Regul Integr Comp Physiol. 2007; 292:R904–R912. doi: 10.1152/ajpregu.00488.2006CrossrefMedlineGoogle Scholar
  • 69. Paxinos G and Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press; 1998.Google Scholar
  • 70. Loughran TP, Deeg HJ, Dahlberg S, Kennedy MS, Storb R, Thomas ED. Incidence of hypertension after marrow transplantation among 112 patients randomized to either cyclosporine or methotrexate as graftversus-host disease prophylaxis.Br J Haematol. 1985; 59:547–553. doi: 10.1111/j.1365-2141.1985.tb07342.xCrossrefMedlineGoogle Scholar
  • 71. Snanoudj R, Kriaa F, Arzouk N, Beaudreuil S, Hiesse C, Durrbach A, Charpentier B. Single-center experience with cyclosporine therapy for kidney transplantation: analysis of a twenty-year period in 1200 patients.Transplant Proc. 2004; 36:83S–88S. doi: 10.1016/j.transproceed.2004.01.089CrossrefMedlineGoogle Scholar
  • 72. Taler SJ, Textor SC, Canzanello VJ, Schwartz L. Cyclosporin-induced hypertension: incidence, pathogenesis and management.Drug Saf. 1999; 20:437–449. doi: 10.2165/00002018-199920050-00004CrossrefMedlineGoogle Scholar


eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.