Skip main navigation

Gut Microbiota–Derived Trimethylamine N-Oxide Contributes to Abdominal Aortic Aneurysm Through Inflammatory and Apoptotic Mechanisms

Originally publishedhttps://doi.org/10.1161/CIRCULATIONAHA.122.060573Circulation. 2023;147:1079–1096

    Background:

    Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention.

    Methods:

    TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor–deficient (Ldlr−/−) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3−/−). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA.

    Results:

    Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3−/− mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells–augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK.

    Conclusions:

    These results define a role for gut microbiota–generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress–related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.

    Footnotes

    *T.W. Benson and K.A. Conrad contributed equally.

    Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.060573.

    For Sources of Funding and Disclosures, see page 1094.

    Circulation is available at www.ahajournals.org/journal/circ

    Correspondence to: A. Phillip Owens III, PhD, University of Cincinnati, 231 Albert Sabin Way, ML: 0542, Cincinnati, OH 45267-0542. Email

    References

    • 1. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FGR, Hamburg NM, Kinlay S, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.J Am Coll Cardiol. 2017; 69:1465–1508. doi: 10.1016/j.jacc.2016.11.008CrossrefMedlineGoogle Scholar
    • 2. Gillum RF. Epidemiology of aortic aneurysm in the United States.J Clin Epidemiol. 1995; 48:1289–1298. doi: 10.1016/0895-4356(95)00045-3CrossrefMedlineGoogle Scholar
    • 3. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, Doubeni CA, Epling JW, Kubik M, Landefeld CS, et al; US Preventive Services Task Force. Screening for abdominal aortic aneurysm: US Preventive Services Task Force recommendation statement.JAMA. 2019; 322:2211–2218. doi: 10.1001/jama.2019.18928CrossrefMedlineGoogle Scholar
    • 4. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms.Expert Rev Cardiovasc Ther. 2015; 13:975–987. doi: 10.1586/14779072.2015.1074861CrossrefMedlineGoogle Scholar
    • 5. Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA revisited: a comprehensive review of risk factors, management, and hallmarks of pathogenesis.Biomedicines. 2022; 10:94. doi: 10.3390/biomedicines10010094CrossrefMedlineGoogle Scholar
    • 6. Lindholt JS, Henneberg EW, Juul S, Fasting H. Impaired results of a randomised double blinded clinical trial of propranolol versus placebo on the expansion rate of small abdominal aortic aneurysms.Int Angiol. 1999; 18:52–57.MedlineGoogle Scholar
    • 7. Takagi H, Yamamoto H, Iwata K, Goto S, Umemoto T; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. Effects of statin therapy on abdominal aortic aneurysm growth: a meta-analysis and meta-regression of observational comparative studies.Eur J Vasc Endovasc Surg. 2012; 44:287–292. doi: 10.1016/j.ejvs.2012.06.021CrossrefMedlineGoogle Scholar
    • 8. Sweeting MJ, Thompson SG, Brown LC, Greenhalgh RM, Powell JT. Use of angiotensin converting enzyme inhibitors is associated with increased growth rate of abdominal aortic aneurysms.J Vasc Surg. 2010; 52:1–4. doi: 10.1016/j.jvs.2010.02.264CrossrefMedlineGoogle Scholar
    • 9. Kristensen KE, Torp-Pedersen C, Gislason GH, Egfjord M, Rasmussen HB, Hansen PR. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with abdominal aortic aneurysms: nation-wide cohort study.Arterioscler Thromb Vasc Biol. 2015; 35:733–740. doi: 10.1161/ATVBAHA.114.304428LinkGoogle Scholar
    • 10. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease.Circ Res. 2020; 127:553–570. doi: 10.1161/CIRCRESAHA.120.316242LinkGoogle Scholar
    • 11. Brown JM, Hazen SL. Metaorganismal nutrient metabolism as a basis of cardiovascular disease.Curr Opin Lipidol. 2014; 25:48–53. doi: 10.1097/MOL.0000000000000036CrossrefMedlineGoogle Scholar
    • 12. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature. 2011; 472:57–63. doi: 10.1038/nature09922CrossrefMedlineGoogle Scholar
    • 13. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.Cell. 2016; 165:111–124. doi: 10.1016/j.cell.2016.02.011CrossrefMedlineGoogle Scholar
    • 14. Zhu W, Romano KA, Li L, Buffa JA, Sangwan N, Prakash P, Tittle AN, Li XS, Fu X, Androjna C, et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway.Cell Host Microbe. 2021; 29:1199–1208.e5. doi: 10.1016/j.chom.2021.05.002CrossrefMedlineGoogle Scholar
    • 15. Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB.J Am Heart Assoc. 2016; 5:e002767. doi: 10.1161/jaha.115.002767LinkGoogle Scholar
    • 16. Li T, Chen Y, Gua C, Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress.Front Physiol. 2017; 8:350. doi: 10.3389/fphys.2017.00350CrossrefMedlineGoogle Scholar
    • 17. Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W, Gupta N, Skye SM, Cody DB, Levison BS, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential.Nat Med. 2018; 24:1407–1417. doi: 10.1038/s41591-018-0128-1CrossrefMedlineGoogle Scholar
    • 18. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, Polhemus DJ, Tang WH, Wu Y, Hazen SL, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure.Circ Heart Fail. 2016; 9:e002314. doi: 10.1161/CIRCHEARTFAILURE.115.002314LinkGoogle Scholar
    • 19. Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction.Cell Physiol Biochem. 2017; 44:152–162. doi: 10.1159/000484623CrossrefMedlineGoogle Scholar
    • 20. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.Circ Res. 2015; 116:448–455. doi: 10.1161/CIRCRESAHA.116.305360LinkGoogle Scholar
    • 21. Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, Ho KJ, Varga J, DiDonato JA, Tang WHW, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease.Arterioscler Thromb Vasc Biol. 2020; 40:1239–1255. doi: 10.1161/ATVBAHA.120.314139LinkGoogle Scholar
    • 22. Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WH. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease.J Am Heart Assoc. 2016; 5:d004237. doi: 10.1161/JAHA.116.004237LinkGoogle Scholar
    • 23. Zeng Q, Rong Y, Li D, Wu Z, He Y, Zhang H, Huang L. Identification of serum biomarker in acute aortic dissection by global and targeted metabolomics.Ann Vasc Surg. 2020; 68:497–504. doi: 10.1016/j.avsg.2020.06.026CrossrefMedlineGoogle Scholar
    • 24. Jiang S, Shui Y, Cui Y, Tang C, Wang X, Qiu X, Hu W, Fei L, Li Y, Zhang S, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension.Redox Biol. 2021; 46:102115. doi: 10.1016/j.redox.2021.102115CrossrefMedlineGoogle Scholar
    • 25. Karbach SH, Schönfelder T, Brandão I, Wilms E, Hörmann N, Jäckel S, Schüler R, Finger S, Knorr M, Lagrange J, et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction.J Am Heart Assoc. 2016; 5:e003698. doi: 10.1161/jaha.116.003698LinkGoogle Scholar
    • 26. Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels.Am J Physiol Gastrointest Liver Physiol. 2021; 321:G355–G366. doi: 10.1152/ajpgi.00099.2021CrossrefMedlineGoogle Scholar
    • 27. Xie J, Lu W, Zhong L, Hu Y, Li Q, Ding R, Zhong Z, Liu Z, Xiao H, Xie D, et al. Alterations in gut microbiota of abdominal aortic aneurysm mice.BMC Cardiovasc Disord. 2020; 20:32. doi: 10.1186/s12872-020-01334-2CrossrefMedlineGoogle Scholar
    • 28. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice.J Clin Invest. 2000; 105:1605–1612. doi: 10.1172/JCI7818CrossrefMedlineGoogle Scholar
    • 29. Owens AP, Edwards TL, Antoniak S, Geddings JE, Jahangir E, Wei WQ, Denny JC, Boulaftali Y, Bergmeier W, Daugherty A, et al. Platelet inhibitors reduce rupture in a mouse model of established abdominal aortic aneurysm.Arterioscler Thromb Vasc Biol. 2015; 35:2032–2041. doi: 10.1161/ATVBAHA.115.305537LinkGoogle Scholar
    • 30. Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.Proc Natl Acad Sci U S A. 2012; 109:21307–21312. doi: 10.1073/pnas.1215689109CrossrefMedlineGoogle Scholar
    • 31. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.mBio. 2015; 6:e02481. doi: 10.1128/mBio.02481-14CrossrefMedlineGoogle Scholar
    • 32. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.Cell Metab. 2013; 17:49–60. doi: 10.1016/j.cmet.2012.12.011CrossrefMedlineGoogle Scholar
    • 33. Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, Brown AL, Gromovsky AD, Heine M, Chatterjee A, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue.Cell Rep. 2017; 19:2451–2461. doi: 10.1016/j.celrep.2017.05.077CrossrefMedlineGoogle Scholar
    • 34. Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, Schell M, Sandoval-Espinola WJ, Tao J, Sha B, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction.Cell Metab. 2019; 30:1141–1151.e5. doi: 10.1016/j.cmet.2019.08.021CrossrefMedlineGoogle Scholar
    • 35. Rowe VL, Stevens SL, Reddick TT, Freeman MB, Donnell R, Carroll RC, Goldman MH. Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas.J Vasc Surg. 2000; 31:567–576.CrossrefMedlineGoogle Scholar
    • 36. Hu J, Xu J, Shen S, Zhang W, Chen H, Sun X, Qi Y, Zhang Y, Zhang Q, Guo M, et al. Trimethylamine N-oxide promotes abdominal aortic aneurysm formation by aggravating aortic smooth muscle cell senescence in mice.J Cardiovasc Transl Res. 2022; 15:1064–1074. doi: 10.1007/s12265-022-10211-6CrossrefMedlineGoogle Scholar
    • 37. Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments.Nat Rev Cardiol. 2019; 16:225–242. doi: 10.1038/s41569-018-0114-9CrossrefMedlineGoogle Scholar
    • 38. Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms.Arterioscler Thromb Vasc Biol. 2003; 23:483–488. doi: 10.1161/01.ATV.0000058404.92759.32LinkGoogle Scholar
    • 39. Baxter BT, Matsumura J, Curci JA, McBride R, Larson L, Blackwelder W, Lam D, Wijesinha M, Terrin M; N-TA3CT Investigators. Effect of doxycycline on aneurysm growth among patients with small infrarenal abdominal aortic aneurysms: a randomized clinical trial.JAMA. 2020; 323:2029–2038. doi: 10.1001/jama.2020.5230CrossrefMedlineGoogle Scholar
    • 40. Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway.J Am Heart Assoc. 2017; 6:e006347. doi: 10.1161/jaha.117.006347LinkGoogle Scholar
    • 41. King VL, Trivedi DB, Gitlin JM, Loftin CD. Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice.Arterioscler Thromb Vasc Biol. 2006; 26:1137–1143. doi: 10.1161/01.ATV.0000216119.79008.acLinkGoogle Scholar
    • 42. Xiong W, MacTaggart J, Knispel R, Worth J, Persidsky Y, Baxter BT. Blocking TNF-alpha attenuates aneurysm formation in a murine model.J Immunol. 2009; 183:2741–2746. doi: 10.4049/jimmunol.0803164CrossrefMedlineGoogle Scholar
    • 43. Shi J, Guo J, Li Z, Xu B, Miyata M. Importance of NLRP3 inflammasome in abdominal aortic aneurysms.J Atheroscler Thromb. 2021; 28:454–466. doi: 10.5551/jat.RV17048CrossrefMedlineGoogle Scholar
    • 44. Zhang X, Thatcher SE, Rateri DL, Bruemmer D, Charnigo R, Daugherty A, Cassis LA. Transient exposure of neonatal female mice to testosterone abrogates the sexual dimorphism of abdominal aortic aneurysms.Circ Res. 2012; 110:e73–e85. doi: 10.1161/CIRCRESAHA.111.253880LinkGoogle Scholar
    • 45. Alsiraj Y, Thatcher SE, Charnigo R, Chen K, Blalock E, Daugherty A, Cassis LA. Female mice with an XY sex chromosome complement develop severe angiotensin II-induced abdominal aortic aneurysms.Circulation. 2017; 135:379–391. doi: 10.1161/CIRCULATIONAHA.116.023789LinkGoogle Scholar
    • 46. Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty years of studying AngII (angiotensin II)-induced abdominal aortic pathologies in mice: continuing questions and challenges to provide insight into the human disease.Arterioscler Thromb Vasc Biol. 2022; 42:277–288. doi: 10.1161/ATVBAHA.121.317058LinkGoogle Scholar
    • 47. Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease.Nature. 2016; 529:326–335. doi: 10.1038/nature17041CrossrefMedlineGoogle Scholar
    • 48. Li Y, Lu G, Sun D, Zuo H, Wang DW, Yan J. Inhibition of endoplasmic reticulum stress signaling pathway: a new mechanism of statins to suppress the development of abdominal aortic aneurysm.PLoS One. 2017; 12:e0174821. doi: 10.1371/journal.pone.0174821CrossrefMedlineGoogle Scholar
    • 49. Navas-Madronal M, Rodriguez C, Kassan M, Fite J, Escudero JR, Canes L, Martinez-Gonzalez J, Camacho M, Galan M. Enhanced endoplasmic reticulum and mitochondrial stress in abdominal aortic aneurysm.Clin Sci (Lond). 2019; 133:1421–1438. doi: 10.1042/CS20190399CrossrefMedlineGoogle Scholar
    • 50. López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms.Am J Pathol. 1997; 150:993–1007.MedlineGoogle Scholar
    • 51. Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection.Front Immunol. 2018; 9:3083. doi: 10.3389/fimmu.2018.03083CrossrefMedlineGoogle Scholar
    • 52. Kalnins G, Kuka J, Grinberga S, Makrecka-Kuka M, Liepinsh E, Dambrova M, Tars K. Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae.J Biol Chem. 2015; 290:21732–21740. doi: 10.1074/jbc.M115.670471CrossrefMedlineGoogle Scholar
    • 53. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review.Antonie Van Leeuwenhoek. 2020; 113:2019–2040. doi: 10.1007/s10482-020-01474-7CrossrefMedlineGoogle Scholar
    • 54. Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, et al. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health.Gut Microbes. 2021; 13:1922241. doi: 10.1080/19490976.2021.1922241CrossrefMedlineGoogle Scholar
    • 55. Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, Sidaway JE, Martin G, Gloor GB, Swann JR, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat.Circ Heart Fail. 2014; 7:491–499. doi: 10.1161/CIRCHEARTFAILURE.113.000978LinkGoogle Scholar
    • 56. Hu J, Xu J, Shen S, Zhang W, Chen H, Sun X, Qi Y, Zhang Y, Zhang Q, Guo M, et al. Trimethylamine N-oxide promotes abdominal aortic aneurysm formation by aggravating aortic smooth muscle cell senescence in mice.J Cardiovasc Transl Res. 2022; 15:1064–1074. doi: 10.1007/s12265-022-10211-6CrossrefMedlineGoogle Scholar
    • 57. Raffetto JD, Leverkus M, Park HY, Menzoian JO. Synopsis on cellular senescence and apoptosis.J Vasc Surg. 2001; 34:173–177. doi: 10.1067/mva.2001.115964CrossrefMedlineGoogle Scholar
    • 58. Quintana RA, Taylor WR. Cellular mechanisms of aortic aneurysm formation.Circ Res. 2019; 124:607–618. doi: 10.1161/CIRCRESAHA.118.313187LinkGoogle Scholar
    • 59. Sundermann AC, Saum K, Conrad KA, Russell HM, Edwards TL, Mani K, Bjorck M, Wanhainen A, Owens AP. Prognostic value of D-dimer and markers of coagulation for stratification of abdominal aortic aneurysm growth.Blood Adv. 2018; 2:3088–3096. doi: 10.1182/bloodadvances.2017013359CrossrefMedlineGoogle Scholar
    • 60. Wanhainen A, Mani K, Vorkapic E, De Basso R, Bjorck M, Lanne T, Wagsater D. Screening of circulating microRNA biomarkers for prevalence of abdominal aortic aneurysm and aneurysm growth.Atherosclerosis. 2017; 256:82–88. doi: 10.1016/j.atherosclerosis.2016.11.007CrossrefMedlineGoogle Scholar
    • 61. Lu G, Su G, Davis JP, Schaheen B, Downs E, Roy RJ, Ailawadi G, Upchurch GR. A novel chronic advanced stage abdominal aortic aneurysm murine model.J Vasc Surg. 2017; 66:232–242.e4. doi: 10.1016/j.jvs.2016.07.105CrossrefMedlineGoogle Scholar
    • 62. Berman AG, Romary DJ, Kerr KE, Gorazd NE, Wigand MM, Patnaik SS, Finol EA, Cox AD, Goergen CJ. Experimental aortic aneurysm severity and growth depend on topical elastase concentration and lysyl oxidase inhibition.Sci Rep. 2022; 12:99. doi: 10.1038/s41598-021-04089-8CrossrefMedlineGoogle Scholar
    • 63. Wang Z, Levison BS, Hazen JE, Donahue L, Li XM, Hazen SL. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry.Anal Biochem. 2014; 455:35–40. doi: 10.1016/j.ab.2014.03.016CrossrefMedlineGoogle Scholar
    • 64. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data.Nat Methods. 2010; 7:335–336. doi: 10.1038/nmeth.f.303CrossrefMedlineGoogle Scholar
    • 65. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data.Nat Methods. 2016; 13:581–583. doi: 10.1038/nmeth.3869CrossrefMedlineGoogle Scholar
    • 66. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data.PLoS One. 2013; 8:e61217. doi: 10.1371/journal.pone.0061217CrossrefMedlineGoogle Scholar
    • 67. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible.PLoS Comput Biol. 2014; 10:e1003531. doi: 10.1371/journal.pcbi.1003531CrossrefMedlineGoogle Scholar
    • 68. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer Publishing Co, Inc; 2009.CrossrefGoogle Scholar
    • 69. Benjamini Y. Discovering the false discovery rate.J Royal Stat Soc Series B (Stat Method). 2010; 72:405–416. doi: 10.1111/j.1467-9868.2010.00746.xCrossrefGoogle Scholar
    • 70. Hollander M, Wolfe DAW. Nonparametric Statistical Methods. Wiley; 1999.Google Scholar
    • 71. Rivero-Gutiérrez B, Anzola A, Martínez-Augustin O, de Medina FS. Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting.Anal Biochem. 2014; 467:1–3. doi: 10.1016/j.ab.2014.08.027CrossrefMedlineGoogle Scholar

    eLetters(0)

    eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

    Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.