Skip main navigation

Novel Role for Cardiolipin as a Target of Therapy to Mitigate Myocardial Injury Caused by Venoarterial Extracorporeal Membrane Oxygenation

Originally published 2024;149:1341–1353


    Cardiolipin is a mitochondrial-specific phospholipid that maintains integrity of the electron transport chain (ETC) and plays a central role in myocardial ischemia/reperfusion injury. Tafazzin is an enzyme that is required for cardiolipin maturation. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) use to provide hemodynamic support for acute myocardial infarction has grown exponentially, is associated with poor outcomes, and is under active clinical investigation, yet the mechanistic effect of VA-ECMO on myocardial damage in acute myocardial infarction remains poorly understood. We hypothesized that VA-ECMO acutely depletes myocardial cardiolipin and exacerbates myocardial injury in acute myocardial infarction.


    We examined cardiolipin and tafazzin levels in human subjects with heart failure and healthy swine exposed to VA-ECMO and used a swine model of closed-chest myocardial ischemia/reperfusion injury to evaluate the effect of VA-ECMO on cardiolipin expression, myocardial injury, and mitochondrial function.


    Cardiolipin and tafazzin levels are significantly reduced in the left ventricles of individuals requiring VA-ECMO compared with individuals without VA-ECMO before heart transplantation. Six hours of exposure to VA-ECMO also decreased left ventricular levels of cardiolipin and tafazzin in healthy swine compared with sham controls. To explore whether cardiolipin depletion by VA-ECMO increases infarct size, we performed left anterior descending artery occlusion for a total of 120 minutes followed by 180 minutes of reperfusion in adult swine in the presence and absence of MTP-131, an amphipathic molecule that interacts with cardiolipin to stabilize the inner mitochondrial membrane. Compared with reperfusion alone, VA-ECMO activation beginning after 90 minutes of left anterior descending artery occlusion increased infarct size (36±8% versus 48±7%; P<0.001). VA-ECMO also decreased cardiolipin and tafazzin levels, disrupted mitochondrial integrity, reduced electron transport chain function, and promoted oxidative stress. Compared with reperfusion alone or VA-ECMO before reperfusion, delivery of MTP-131 before VA-ECMO activation reduced infarct size (22±8%; P=0.03 versus reperfusion alone and P<0.001 versus VA-ECMO alone). MTP-131 restored cardiolipin and tafazzin levels, stabilized mitochondrial function, and reduced oxidative stress in the left ventricle.


    We identified a novel mechanism by which VA-ECMO promotes myocardial injury and further identify cardiolipin as an important target of therapy to reduce infarct size and to preserve mitochondrial function in the setting of VA-ECMO for acute myocardial infarction.


    Supplemental Material is available at

    Continuing medical education (CME) credit is available for this article. Go to to take the quiz.

    For Sources of Funding and Disclosures, see page 1352

    Circulation is available at

    Correspondence to: Navin K. Kapur, MD, Tufts Medical Center, 800 Washington St, Box 80, Boston, MA 02111. Email


    • 1. Vallabhajosyula S, Prasad A, Bell MR, Sandhu GS, Eleid MF, Dunlay SM, Schears GJ, Stulak JM, Singh M, Gersh BJ, et al. Extracorporeal membrane oxygenation use in acute myocardial infarction in the United States, 2000 to 2014.Circ Heart Fail. 2019; 12:e005929. doi: 10.1161/CIRCHEARTFAILURE.119.005929LinkGoogle Scholar
    • 2. Becher PM, Schrage B, Sinning CR, Schmack B, Fluschnik N, Schwarzl M, Waldeyer C, Lindner D, Seiffert M, Neumann JT, et al. Venoarterial extracorporeal membrane oxygenation for cardiopulmonary support.Circulation. 2018; 138:2298–2300. doi: 10.1161/CIRCULATIONAHA.118.036691LinkGoogle Scholar
    • 3. Griffioen AM, Van Den Oord SCH, Van Wely MH, Swart GC, Van Wetten HB, Danse PW, Damman P, Van Royen N, Van Geuns RJM. Short-term outcomes of elective high-risk PCI with extracorporeal membrane oxygenation support: a single-centre registry.J Interv Cardiol. 2022; 2022:7245384. doi: 10.1155/2022/7245384CrossrefMedlineGoogle Scholar
    • 4. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest.Circ Heart Fail. 2018; 11:e004905. doi: 10.1161/CIRCHEARTFAILURE.118.004905LinkGoogle Scholar
    • 5. Acharya D, Torabi M, Borgstrom M, Rajapreyar I, Lee K, Kern K, Rycus P, Tonna JE, Alexander P, Lotun K. Extracorporeal membrane oxygenation in myocardial infarction complicated by cardiogenic shock: analysis of the ELSO registry.J Am Coll Cardiol. 2020; 76:1001–1002. doi: 10.1016/j.jacc.2020.06.062CrossrefMedlineGoogle Scholar
    • 6. Thiele H, Zeymer U, Akin I, Behnes M, Rassaf T, Mahabadi AA, Lehmann R, Eitel I, Graf T, Seidler T, et al; ECLS-SHOCK Investigators. Extracorporeal life support in infarct-related cardiogenic shock.N Engl J Med. 2023; 389:1286–1297. doi: 10.1056/NEJMoa2307227CrossrefMedlineGoogle Scholar
    • 7. Udesen NJ, Møller JE, Lindholm MG, Eiskjær H, Schäfer A, Werner N, Holmvang L, Terkelsen CJ, Jensen LO, Junker A, et al; DanGer Shock Investigators. Rationale and design of DanGer shock: Danish-German Cardiogenic Shock Trial.Am Heart J. 2019; 214:60–68. doi: 10.1016/j.ahj.2019.04.019CrossrefMedlineGoogle Scholar
    • 8. Swain L, Reyelt L, Bhave S, Qiao X, Thomas CJ, Zweck E, Crowley P, Boggins C, Esposito M, Chin M, et al. Transvalvular ventricular unloading before reperfusion in acute myocardial infarction.J Am Coll Cardiol. 2020; 76:684–699. doi: 10.1016/j.jacc.2020.06.031CrossrefMedlineGoogle Scholar
    • 9. Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease.Biochim Biophys Acta Mol Basis Dis. 2019; 1865:810–821. doi: 10.1016/j.bbadis.2018.08.025CrossrefMedlineGoogle Scholar
    • 10. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection.Am J Physiol Heart Circ Physiol. 2018; 315:H1341–H1352. doi: 10.1152/ajpheart.00028.2018CrossrefMedlineGoogle Scholar
    • 11. Brown DA, Sabbah HN, Shaikh SR. Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury.Pharmacol Ther. 2013; 140:258–266. doi: 10.1016/j.pharmthera.2013.07.005CrossrefMedlineGoogle Scholar
    • 12. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury.Ann N Y Acad Sci. 2005; 1047:248–258. doi: 10.1196/annals.1341.022CrossrefMedlineGoogle Scholar
    • 13. Brown DA, Sabbah HN, Shaikh SR. Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury.Pharmacol Ther. 2013; 140:258–266. doi: 10.1016/j.pharmthera.2013.07.005CrossrefMedlineGoogle Scholar
    • 14. Schlame M. Cardiolipin remodeling and the function of tafazzin.Biochim Biophys Acta. 2013; 1831:582–588. doi: 10.1016/j.bbalip.2012.11.007CrossrefMedlineGoogle Scholar
    • 15. Chin MT, Conway SJ. Role of tafazzin in mitochondrial function, development and disease.J Dev Biol. 2020; 8:10. doi: 10.3390/jdb8020010CrossrefMedlineGoogle Scholar
    • 16. Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics.Br J Pharmacol. 2014; 171:2029–2050. doi: 10.1111/bph.12461CrossrefMedlineGoogle Scholar
    • 17. Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats.J Cardiovasc Pharmacol. 2014; 64:543–553. doi: 10.1097/FJC.0000000000000155CrossrefMedlineGoogle Scholar
    • 18. Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A, Merkely B, Godlewski J, Halaby R, Korjian S, et al. EMBRACE STEMI study: a phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention.Eur Heart J. 2016; 37:1296–1303. doi: 10.1093/eurheartj/ehv597CrossrefMedlineGoogle Scholar
    • 19. Kloner RA. Mitochondrial protective agents for ischemia/reperfusion injury.Circ Cardiovasc Interv. 2017; 10:e005805. doi: 10.1161/CIRCINTERVENTIONS.117.005805LinkGoogle Scholar
    • 20. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, et al. Heart disease and stroke statistics–2022 update: a report from the American Heart Association.Circulation. 2022; 145:e153–e639. doi: 10.1161/CIR.0000000000001052LinkGoogle Scholar
    • 21. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, Maehara A, Eitel I, Granger CB, Jenkins PL, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials.J Am Coll Cardiol. 2016; 67:1674–1683. doi: 10.1016/j.jacc.2016.01.069CrossrefMedlineGoogle Scholar
    • 22. de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H, Stone GW. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials.Eur Heart J. 2017; 38:3502–3510. doi: 10.1093/eurheartj/ehx414CrossrefMedlineGoogle Scholar
    • 23. Selker HP, Udelson JE, Ruthazer R, D’Agostino RB, Nichols M, Ben-Yehuda O, Eitel I, Granger CB, Jenkins P, Maehara A, et al. Relationship between therapeutic effects on infarct size in acute myocardial infarction and therapeutic effects on 1-year outcomes: a patient-level analysis of randomized clinical trials.Am Heart J. 2017; 188:18–25. doi: 10.1016/j.ahj.2017.02.028CrossrefMedlineGoogle Scholar
    • 24. Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations.Eur Heart J. 2017; 38:935–941. doi: 10.1093/eurheartj/ehw145CrossrefMedlineGoogle Scholar
    • 25. Kapur NK, Qiao X, Paruchuri V, Morine KJ, Syed W, Dow S, Shah N, Pandian N, Karas RH. Mechanical pre-conditioning with acute circulatory support before reperfusion limits infarct size in acute myocardial infarction.JACC Heart Fail. 2015; 3:873–882. doi: 10.1016/j.jchf.2015.06.010CrossrefMedlineGoogle Scholar
    • 26. Esposito ML, Zhang Y, Qiao X, Reyelt L, Paruchuri V, Schnitzler GR, Morine KJ, Annamalai SK, Bogins C, Natov PS, et al. Left ventricular unloading before reperfusion promotes functional recovery after acute myocardial infarction.J Am Coll Cardiol. 2018; 72:501–514. doi: 10.1016/j.jacc.2018.05.034CrossrefMedlineGoogle Scholar
    • 27. Kapur NK, Alkhouli MA, DeMartini TJ, Faraz H, George ZH, Goodwin MJ, Hernandez-Montfort JA, Iyer VS, Josephy N, Kalra S, et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment-elevation myocardial infarction.Circulation. 2019; 139:337–346. doi: 10.1161/CIRCULATIONAHA.118.038269LinkGoogle Scholar
    • 28. Kapur NK, Kim RJ, Moses JW, Stone GW, Udelson JE, Ben-Yehuda O, Redfors B, Issever MO, Josephy N, Polak SJ, et al. Primary left ventricular unloading with delayed reperfusion in patients with anterior ST-elevation myocardial infarction: rationale and design of the STEMI-DTU randomized pivotal trial.Am Heart J. 2022; 254:122–132. doi: 10.1016/j.ahj.2022.08.011CrossrefMedlineGoogle Scholar
    • 29. Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support.J Am Coll Cardiol. 2015; 66:2663–2674. doi: 10.1016/j.jacc.2015.10.017CrossrefMedlineGoogle Scholar
    • 30. Hayes RA, Shekar K, Fraser JF. Is hyperoxaemia helping or hurting patients during extracorporeal membrane oxygenation? Review of a complex problem.Perfusion. 2013; 28:184–193. doi: 10.1177/0267659112473172CrossrefMedlineGoogle Scholar
    • 31. Jentzer JC, Miller PE, Alviar C, Yalamuri S, Bohman JK, Tonna JE. Exposure to arterial hyperoxia during extracorporeal membrane oxygenator support and mortality in patients with cardiogenic shock.Circ Heart Fail. 2023; 16:e010328. doi: 10.1161/CIRCHEARTFAILURE.122.010328LinkGoogle Scholar
    • 32. Everett KD, Swain L, Reyelt L, Majumdar M, Qiao X, Bhave S, Warner M, Mahmoudi E, Chin MT, Awata J, et al. Transvalvular unloading mitigates ventricular injury due to venoarterial extracorporeal membrane oxygenation in acute myocardial infarction.JACC Basic Transl Sci. 2023; 8:769–780. doi: 10.1016/j.jacbts.2023.01.004CrossrefMedlineGoogle Scholar
    • 33. Jain P, Salama M, Everett K, Reyelt L, Kapur NK. To vent or not to vent: a loaded question during venoarterial extracorporeal membrane oxygenation support for cardiogenic shock.Circ Cardiovasc Interv. 2021; 14:e010537. doi: 10.1161/CIRCINTERVENTIONS.121.010537LinkGoogle Scholar
    • 34. Shen J, Yu W, Shi J, Chen Q, Hu Y, Zhang J, Gao T, Xi F, Gong J, He C, et al. Effect of venovenous extracorporeal membrane oxygenation on the heart in a healthy piglet model.J Cardiothorac Surg. 2013; 8:163. doi: 10.1186/1749-8090-8-163CrossrefMedlineGoogle Scholar
    • 35. Hayashida K, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, Nishikimi M, Miyara SJ, Rolston DM, Guevara S, et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies.J Transl Med. 2021; 19:214. doi: 10.1186/s12967-021-02878-3CrossrefMedlineGoogle Scholar
    • 36. Guariento A, Piekarski BL, Doulamis IP, Blitzer D, Ferraro AM, Harrild DM, Zurakowski D, Del Nido PJ, McCully JD, Emani SM. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury.J Thorac Cardiovasc Surg. 2021; 162:992–1001. doi: 10.1016/j.jtcvs.2020.10.151CrossrefMedlineGoogle Scholar
    • 37. Mitchell W, Ng EA, Tamucci JD, Boyd KJ, Sathappa M, Coscia A, Pan M, Han X, Eddy NA, May ER, et al. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action.J Biol Chem. 2020; 295:7452–7469. doi: 10.1074/jbc.RA119.012094CrossrefMedlineGoogle Scholar
    • 38. Reid Thompson W, Hornby B, Manuel R, Bradley E, Laux J, Carr J, Vernon HJ. A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism.Genet Med. 2021; 23:471–478. doi: 10.1038/s41436-020-01006-8CrossrefMedlineGoogle Scholar
    • 39. Butler J, Khan MS, Anker SD, Fonarow GC, Kim RJ, Nodari S, O’Connor CM, Pieske B, Pieske-Kraigher E, Sabbah HN, et al. Effects of elamipretide on left ventricular function in patients with heart failure with reduced ejection fraction: the PROGRESS-HF phase 2 trial.J Card Fail. 2020; 26:429–437. doi: 10.1016/j.cardfail.2020.02.001CrossrefMedlineGoogle Scholar


    eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

    Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.