Skip main navigation

Development and Validation of the American Heart Association’s PREVENT Equations

Originally publishedhttps://doi.org/10.1161/CIRCULATIONAHA.123.067626Circulation. 2024;149:430–449

    BACKGROUND:

    Multivariable equations are recommended by primary prevention guidelines to assess absolute risk of cardiovascular disease (CVD). However, current equations have several limitations. Therefore, we developed and validated the American Heart Association Predicting Risk of CVD EVENTs (PREVENT) equations among US adults 30 to 79 years of age without known CVD.

    METHODS:

    The derivation sample included individual-level participant data from 25 data sets (N=3 281 919) between 1992 and 2017. The primary outcome was CVD (atherosclerotic CVD and heart failure). Predictors included traditional risk factors (smoking status, systolic blood pressure, cholesterol, antihypertensive or statin use, and diabetes) and estimated glomerular filtration rate. Models were sex-specific, race-free, developed on the age scale, and adjusted for competing risk of non-CVD death. Analyses were conducted in each data set and meta-analyzed. Discrimination was assessed using the Harrell C-statistic. Calibration was calculated as the slope of the observed versus predicted risk by decile. Additional equations to predict each CVD subtype (atherosclerotic CVD and heart failure) and include optional predictors (urine albumin-to-creatinine ratio and hemoglobin A1c), and social deprivation index were also developed. External validation was performed in 3 330 085 participants from 21 additional data sets.

    RESULTS:

    Among 6 612 004 adults included, mean±SD age was 53±12 years, and 56% were women. Over a mean±SD follow-up of 4.8±3.1 years, there were 211 515 incident total CVD events. The median C-statistics in external validation for CVD were 0.794 (interquartile interval, 0.763–0.809) in female and 0.757 (0.727–0.778) in male participants. The calibration slopes were 1.03 (interquartile interval, 0.81–1.16) and 0.94 (0.81–1.13) among female and male participants, respectively. Similar estimates for discrimination and calibration were observed for atherosclerotic CVD– and heart failure–specific models. The improvement in discrimination was small but statistically significant when urine albumin-to-creatinine ratio, hemoglobin A1c, and social deprivation index were added together to the base model to total CVD (ΔC-statistic [interquartile interval] 0.004 [0.004–0.005] and 0.005 [0.004–0.007] among female and male participants, respectively). Calibration improved significantly when the urine albumin-to-creatinine ratio was added to the base model among those with marked albuminuria (>300 mg/g; 1.05 [0.84–1.20] versus 1.39 [1.14–1.65]; P=0.01).

    CONCLUSIONS:

    PREVENT equations accurately and precisely predicted risk for incident CVD and CVD subtypes in a large, diverse, and contemporary sample of US adults by using routinely available clinical variables.

    Footnotes

    *A list of CKD-PC investigators and collaborators is provided in the Supplemental Material. Cohort acronyms/abbreviations are listed in Appendix S2.

    Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.123.067626.

    For Sources of Funding and Disclosures, see pages 446–447.

    Circulation is available at www.ahajournals.org/journal/circ

    Correspondence to: Josef Coresh, MD, PhD, Chronic Kidney Disease Prognosis Consortium, 227 East 30th, Room 707, New York, NY 10003. Email

    REFERENCES

    • 1. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Circulation. 2019; 140:e596–e646. doi: 10.1161/CIR.0000000000000678LinkGoogle Scholar
    • 2. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, O’Donnell CJ, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation. 2014; 129:S49–S73. doi: 10.1161/01.cir.0000437741.48606.98LinkGoogle Scholar
    • 3. Lloyd-Jones DM, Braun LT, Ndumele CE, Smith SC, Sperling LS, Virani SS, Blumenthal RS. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology.Circulation. 2019; 139:e1162–e1177. doi: 10.1161/CIR.0000000000000638LinkGoogle Scholar
    • 4. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Circulation. 2019; 139:e1082–e1143. doi: 10.1161/CIR.0000000000000625LinkGoogle Scholar
    • 5. Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions.Circulation. 2010; 121:1768–1777. doi: 10.1161/CIRCULATIONAHA.109.849166LinkGoogle Scholar
    • 6. Karmali KN, Goff DC, Ning H, Lloyd-Jones DM. A systematic examination of the 2013 ACC/AHA pooled cohort risk assessment tool for atherosclerotic cardiovascular disease.J Am Coll Cardiol. 2014; 64:959–968. doi: 10.1016/j.jacc.2014.06.1186CrossrefMedlineGoogle Scholar
    • 7. Shah NS, Molsberry R, Rana JS, Sidney S, Capewell S, O’Flaherty M, Carnethon M, Lloyd-Jones DM, Khan SS. Heterogeneous trends in burden of heart disease mortality by subtypes in the United States, 1999–2018: observational analysis of vital statistics.BMJ. 2020; 370:m2688. doi: 10.1136/bmj.m2688CrossrefMedlineGoogle Scholar
    • 8. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2023 update: a report from the American Heart Association.Circulation. 2023; 147:e93–e621. doi: 10.1161/CIR.0000000000001123LinkGoogle Scholar
    • 9. Lloyd-Jones DM, Ning H, Labarthe D, Brewer L, Sharma G, Rosamond W, Foraker RE, Black T, Grandner MA, Allen NB, et al. Status of cardiovascular health in US adults and children using the American Heart Association’s new “Life’s Essential 8” metrics: prevalence estimates from the National Health and Nutrition Examination Survey (NHANES), 2013 through 2018.Circulation. 2022; 146:822–835. doi: 10.1161/CIRCULATIONAHA.122.060911LinkGoogle Scholar
    • 10. Bucholz EM, Rodday AM, Kolor K, Khoury MJ, de Ferranti SD. Prevalence and predictors of cholesterol screening, awareness, and statin treatment among US adults with familial hypercholesterolemia or other forms of severe dyslipidemia (1999–2014).Circulation. 2018; 137:2218–2230. doi: 10.1161/CIRCULATIONAHA.117.032321LinkGoogle Scholar
    • 11. Diaz CL, Shah NS, Lloyd-Jones DM, Khan SS. State of the nation’s cardiovascular health and targeting health equity in the United States: a narrative review.JAMA Cardiol. 2021; 6:963–970. doi: 10.1001/jamacardio.2021.1137CrossrefMedlineGoogle Scholar
    • 12. Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, Coresh J, Baker-Smith CM, Carnethon MR, Després J-P, et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: a scientific statement from the American Heart Association.Circulation. 2023; 148:1636–1664. doi: 10.1161/CIR.0000000000001186LinkGoogle Scholar
    • 13. Ndumele CE, Rangaswami J, Chow SL, Neeland IJ, Tuttle KR, Khan SS, Coresh J, Mathew RO, Baker-Smith CM, Carnethon MR, et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association.Circulation. 2023; 148:1606–1635. doi: 10.1161/CIR.0000000000001184LinkGoogle Scholar
    • 14. Colantonio LD, Gamboa CM, Richman JS, Levitan EB, Soliman EZ, Howard G, Safford MM. Black-white differences in incident fatal, nonfatal, and total coronary heart disease.Circulation. 2017; 136:152–166. doi: 10.1161/CIRCULATIONAHA.116.025848LinkGoogle Scholar
    • 15. Shah NS, Huang X, Petito LC, Bancks MP, Ning H, Cameron NA, Kershaw KN, Kandula NR, Carnethon MR, Lloyd-Jones DM, et al. Social and psychosocial determinants of racial and ethnic differences in cardiovascular health in the United States population.Circulation. 2023; 147:190–200. doi: 10.1161/CIRCULATIONAHA.122.061991LinkGoogle Scholar
    • 16. Shah NS, Ning H, Petito LC, Kershaw KN, Bancks MP, Reis JP, Rana JS, Sidney S, Jacobs DR, Kiefe CI, et al. Associations of clinical and social risk factors with racial differences in premature cardiovascular disease.Circulation. 2022; 146:201–210. doi: 10.1161/CIRCULATIONAHA.121.058311LinkGoogle Scholar
    • 17. Mentias A, Mujahid MS, Sumarsono A, Nelson RK, Madron JM, Powell-Wiley TM, Essien UR, Keshvani N, Girotra S, Morris AA, et al. Historical redlining, socioeconomic distress, and risk of heart failure among Medicare beneficiaries.Circulation. 2023; 148:210–219. doi: 10.1161/CIRCULATIONAHA.123.064351LinkGoogle Scholar
    • 18. Khan SU, Javed Z, Lone AN, Dani SS, Amin Z, Al-Kindi SG, Virani SS, Sharma G, Blankstein R, Blaha MJ, et al. Social vulnerability and premature cardiovascular mortality among US counties, 2014 to 2018.Circulation. 2021; 144:1272–1279. doi: 10.1161/CIRCULATIONAHA.121.054516LinkGoogle Scholar
    • 19. Nelson AJ, Pagidipati NJ, Aroda VR, Cavender MA, Green JB, Lopes RD, Al-Khalidi H, Gaynor T, Kaltenbach LA, Kirk JK, et al. Incorporating SGLT2i and GLP-1RA for cardiovascular and kidney disease risk reduction: call for action to the cardiology community.Circulation. 2021; 144:74–84. doi: 10.1161/CIRCULATIONAHA.121.053766LinkGoogle Scholar
    • 20. Khan SS, Coresh J, Pencina MJ, Ndumele CE, Rangaswami J, Chow SL, Palaniappan L, Sperling L, Virani SS, Ho JE, et al; American Heart Association. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: a scientific statement from the American Heart Association.Circulation. 2023; 148:1982–2004. doi: 10.1161/CIR.0000000000001191LinkGoogle Scholar
    • 21. Matsushita K, Ballew SH, Astor BC, Jong PE, Gansevoort RT, Hemmelgarn BR, Levey AS, Levin A, Wen CP, Woodward M, et al; Chronic Kidney Disease Prognosis Consortium. Cohort profile: the Chronic Kidney Disease Prognosis Consortium.Int J Epidemiol. 2013; 42:1660–1668. doi: 10.1093/ije/dys173CrossrefMedlineGoogle Scholar
    • 22. Wright JD, Folsom AR, Coresh J, Sharrett AR, Couper D, Wagenknecht LE, Mosley TH, Ballantyne CM, Boerwinkle EA, Rosamond WD, et al. The ARIC (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8.J Am Coll Cardiol. 2021; 77:2939–2959. doi: 10.1016/j.jacc.2021.04.035CrossrefMedlineGoogle Scholar
    • 23. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR, Liu K, Savage PJ. CARDIA: study design, recruitment, and some characteristics of the examined subjects.J Clin Epidemiol. 1988; 41:1105–1116. doi: 10.1016/0895-4356(88)90080-7CrossrefMedlineGoogle Scholar
    • 24. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A, et al. The Cardiovascular Health Study: design and rationale.Ann Epidemiol. 1991; 1:263–276. doi: 10.1016/1047-2797(91)90005-wCrossrefMedlineGoogle Scholar
    • 25. Dawber TR, Meadors GF, Moore FE. Epidemiological approaches to heart disease: the Framingham Study.Am J Public Health Nations Health. 1951; 41:279–281. doi: 10.2105/ajph.41.3.279CrossrefMedlineGoogle Scholar
    • 26. Taylor HA, Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, Nelson C, Wyatt SB. The Jackson Heart Study: an overview.Ethn Dis. 2005; 15(4 suppl 6):S6-4-17.MedlineGoogle Scholar
    • 27. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR, Kronmal R, Liu K, et al. Multi-ethnic study of atherosclerosis: objectives and design.Am J Epidemiol. 2002; 156:871–881. doi: 10.1093/aje/kwf113CrossrefMedlineGoogle Scholar
    • 28. Perkins RM, Bucaloiu ID, Kirchner HL, Ashouian N, Hartle JE, Yahya T. GFR decline and mortality risk among patients with chronic kidney disease.Clin J Am Soc Nephrol. 2011; 6:1879–1886. doi: 10.2215/CJN.00470111CrossrefMedlineGoogle Scholar
    • 29. Optum Labs. Optum Labs and OptumLabs Data Warehouse (OLDW) Descriptions and Citation.March 2023. PDF. Reproduced with permission from OptumLabs.Google Scholar
    • 30. Howard VJ, Cushman M, Pulley L, Gomez CR, Go RC, Prineas RJ, Graham A, Moy CS, Howard G. The reasons for geographic and racial differences in stroke study: objectives and design.Neuroepidemiology. 2005; 25:135–143. doi: 10.1159/000086678CrossrefMedlineGoogle Scholar
    • 31. Denker M, Boyle S, Anderson AH, Appel LJ, Chen J, Fink JC, Flack J, Go AS, Horwitz E, Hsu CY, et al; Chronic Renal Insufficiency Cohort Study Investigators. Chronic Renal Insufficiency Cohort Study (CRIC): overview and summary of selected findings.Clin J Am Soc Nephrol. 2015; 10:2073–2083. doi: 10.2215/CJN.04260415CrossrefMedlineGoogle Scholar
    • 32. Criqui MH, Barrett-Connor E, Austin M. Differences between respondents and non-respondents in a population-based cardiovascular disease study.Am J Epidemiol. 1978; 108:367–372. doi: 10.1093/oxfordjournals.aje.a112633CrossrefMedlineGoogle Scholar
    • 33. Khan SS, Ning H, Shah SJ, Yancy CW, Carnethon M, Berry JD, Mentz RJ, O’Brien E, Correa A, Suthahar N, et al. 10-year risk equations for incident heart failure in the general population.J Am Coll Cardiol. 2019; 73:2388–2397. doi: 10.1016/j.jacc.2019.02.057CrossrefMedlineGoogle Scholar
    • 34. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetière P, Jousilahti P, Keil U, et al; SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project.Eur Heart J. 2003; 24:987–1003. doi: 10.1016/s0195-668x(03)00114-3CrossrefMedlineGoogle Scholar
    • 35. Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight: reconsidering the use of race correction in clinical algorithms.N Engl J Med. 2020; 383:874–882. doi: 10.1056/NEJMms2004740CrossrefMedlineGoogle Scholar
    • 36. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction.Circulation. 2008; 118:2047–2056. doi: 10.1161/CIRCULATIONAHA.108.804146LinkGoogle Scholar
    • 37. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, Polkinghorne KR, Shankar A, Smith DH, Tonelli M, et al; Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate.JAMA. 2012; 307:1941–1951. doi: 10.1001/jama.2012.3954CrossrefMedlineGoogle Scholar
    • 38. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, et al; CKD Prognosis Consortium. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data.Lancet Diabetes Endocrinol. 2015; 3:514–525. doi: 10.1016/S2213-8587(15)00040-6CrossrefMedlineGoogle Scholar
    • 39. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, Crews DC, Doria A, Estrella MM, Froissart M, et al; Chronic Kidney Disease Epidemiology Collaboration. New creatinine- and cystatin c-based equations to estimate GFR without race.N Engl J Med. 2021; 385:1737–1749. doi: 10.1056/NEJMoa2102953CrossrefMedlineGoogle Scholar
    • 40. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F; Chronic Kidney Disease Epidemiology Collaboration. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values.Clin Chem. 2007; 53:766–772. doi: 10.1373/clinchem.2006.077180CrossrefMedlineGoogle Scholar
    • 41. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.Kidney Int. 2013; 3:1–150.Google Scholar
    • 42. Sumida K, Nadkarni GN, Grams ME, Sang Y, Ballew SH, Coresh J, Matsushita K, Surapaneni A, Brunskill N, Chadban SJ, et al; Chronic Kidney Disease Prognosis Consortium. Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis: an individual participant-based meta-analysis.Ann Intern Med. 2020; 173:426–435. doi: 10.7326/M20-0529CrossrefMedlineGoogle Scholar
    • 43. Fangel MV, Nielsen PB, Kristensen JK, Larsen TB, Overvad TF, Lip GY, Jensen MB. Albuminuria and risk of cardiovascular events and mortality in a general population of patients with type 2 diabetes without cardiovascular disease: a Danish cohort study.Am J Med. 2020; 133:e269–e279. doi: 10.1016/j.amjmed.2019.10.042CrossrefMedlineGoogle Scholar
    • 44. Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey J, Gray SR, Lyall DM, Cleland JG, Gill JMR, Jhund PS, et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease.Nat Med. 2019; 25:1753–1760. doi: 10.1038/s41591-019-0627-8CrossrefMedlineGoogle Scholar
    • 45. Khan MS, Shahid I, Anker SD, Fonarow GC, Fudim M, Hall ME, Hernandez A, Morris AA, Shafi T, Weir MR, et al. Albuminuria and heart failure: JACC state-of-the-art review.J Am Coll Cardiol. 2023; 81:270–282. doi: 10.1016/j.jacc.2022.10.028CrossrefMedlineGoogle Scholar
    • 46. Stempniewicz N, Vassalotti JA, Cuddeback JK, Ciemins E, Storfer-Isser A, Sang Y, Matsushita K, Ballew SH, Chang AR, Levey AS, et al. Chronic kidney disease testing among primary care patients with type 2 diabetes across 24 US health care organizations.Diabetes Care. 2021; 44:2000–2009. doi: 10.2337/dc20-2715CrossrefMedlineGoogle Scholar
    • 47. Robert Graham Center for Policy Studies in Family Medicine and Primary Care. November 5, 2018. Social deprivation index (SDI).Accessed July 31, 2023. https://www.graham-center.org/rgc/maps-data-tools/sdi/social-deprivation-index.htmlGoogle Scholar
    • 48. Kimenai DM, Pirondini L, Gregson J, Prieto D, Pocock SJ, Perel P, Hamilton T, Welsh P, Campbell A, Porteous DJ, et al. Socioeconomic deprivation: an important, largely unrecognized risk factor in primary prevention of cardiovascular disease.Circulation. 2022; 146:240–248. doi: 10.1161/CIRCULATIONAHA.122.060042LinkGoogle Scholar
    • 49. Schultz WM, Kelli HM, Lisko JC, Varghese T, Shen J, Sandesara P, Quyyumi AA, Taylor HA, Gulati M, Harold JG, et al. Socioeconomic status and cardiovascular outcomes: challenges and interventions.Circulation. 2018; 137:2166–2178. doi: 10.1161/CIRCULATIONAHA.117.029652LinkGoogle Scholar
    • 50. Yeager R, Riggs DW, DeJarnett N, Tollerud DJ, Wilson J, Conklin DJ, O’Toole TE, McCracken J, Lorkiewicz P, Xie Z, et al. Association between residential greenness and cardiovascular disease risk.J Am Heart Assoc. 2018; 7:e009117. doi: 10.1161/JAHA.118.009117LinkGoogle Scholar
    • 51. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT; Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis.Lancet. 2010; 375:2073–2081. doi: 10.1016/S0140-6736(10)60674-5CrossrefMedlineGoogle Scholar
    • 52. Appel LJ, Grams M, Woodward M, Harris K, Arima H, Chalmers J, Yatsuya H, Tamakoshi K, Li Y, Coresh J. Estimated glomerular filtration rate, albuminuria, and adverse outcomes: an individual-participant data meta-analysis.JAMA. 2023; 330:1266–1277.CrossrefMedlineGoogle Scholar
    • 53. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions.Lancet Glob Health. 2019; 7:e1332–e1345. doi: 10.1016/S2214-109X(19)30318-3CrossrefMedlineGoogle Scholar
    • 54. Sinha A, Ning H, Carnethon MR, Allen NB, Wilkins JT, Lloyd-Jones DM, Khan SS. Race-and sex-specific population attributable fractions of incident heart failure: a population-based cohort study from the lifetime risk pooling project.Circ Heart Fail. 2021; 14:e008113. doi: 10.1161/CIRCHEARTFAILURE.120.008113LinkGoogle Scholar
    • 55. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, Lear SA, Ndumele CE, Neeland IJ, Sanders P, et al; American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Obesity and cardiovascular disease: a scientific statement from the American Heart Association.Circulation. 2021; 143:e984–e1010. doi: 10.1161/CIR.0000000000000973LinkGoogle Scholar
    • 56. Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale.Am J Epidemiol. 1997; 145:72–80. doi: 10.1093/oxfordjournals.aje.a009034CrossrefMedlineGoogle Scholar
    • 57. Thiebaut AC, Benichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study.Stat Med. 2004; 23:3803–3820. doi: 10.1002/sim.2098CrossrefMedlineGoogle Scholar
    • 58. Cologne J, Hsu WL, Abbott RD, Ohishi W, Grant EJ, Fujiwara S, Cullings HM. Proportional hazards regression in epidemiologic follow-up studies: an intuitive consideration of primary time scale.Epidemiology. 2012; 23:565–573. doi: 10.1097/EDE.0b013e318253e418CrossrefMedlineGoogle Scholar
    • 59. Pencina MJ, Larson MG, D’Agostino RB. Choice of time scale and its effect on significance of predictors in longitudinal studies.Stat Med. 2007; 26:1343–1359. doi: 10.1002/sim.2699CrossrefMedlineGoogle Scholar
    • 60. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe.Eur Heart J. 2021; 42:2439–2454. doi: 10.1093/eurheartj/ehab309CrossrefMedlineGoogle Scholar
    • 61. Pencina MJ, D’Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation.Stat Med. 2004; 23:2109–2123. doi: 10.1002/sim.1802CrossrefMedlineGoogle Scholar
    • 62. Pencina MJ, Steyerberg EW, D’Agostino RB. Net reclassification index at event rate: properties and relationships.Stat Med. 2017; 36:4455–4467.CrossrefMedlineGoogle Scholar
    • 63. Woodward M. Epidemiology: Study Design and Data Analysis. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC; 2005.Google Scholar
    • 64. Collins GS, Reitsma JB, Altman DG, Moons KG; TRIPOD Group. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement The TRIPOD Group.Circulation. 2015; 131:211–219. doi: 10.1161/CIRCULATIONAHA.114.014508LinkGoogle Scholar
    • 65. Quaggin SE, Palevsky PM. Removing race from kidney disease diagnosis.J Am Soc Nephrol. 2021; 32:2987–2989. doi: 10.1681/ASN.2021091284CrossrefMedlineGoogle Scholar
    • 66. Agarwal MA, Fonarow GC, Ziaeian B. National trends in heart failure hospitalizations and readmissions from 2010 to 2017.JAMA Cardiol. 2021; 6:952–956.CrossrefMedlineGoogle Scholar
    • 67. Freaney PM, Lloyd-Jones DM, Khan SS. Could flozins be the statins for risk-based primary prevention of heart failure?JAMA Cardiol. 2021; 6:741–742. doi: 10.1001/jamacardio.2021.1133CrossrefMedlineGoogle Scholar
    • 68. De Lemos JA, Ayers CR, Levine BD, DeFilippi CR, Wang TJ, Hundley WG, Berry JD, Seliger SL, McGuire DK, Ouyang P, et al. Multimodality strategy for cardiovascular risk assessment: performance in 2 population-based cohorts.Circulation. 2017; 135:2119–2132. doi: 10.1161/CIRCULATIONAHA.117.027272LinkGoogle Scholar
    • 69. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation. 2022; 145:e876–e894. doi: 10.1161/CIR.0000000000001062LinkGoogle Scholar
    • 70. Sinha A, Ning H, Cameron N, Bancks M, Carnethon MR, Allen NB, Wilkins JT, Lloyd-Jones DM, Khan SS. Atherosclerotic cardiovascular disease or heart failure: first cardiovascular event in adults with prediabetes and diabetes.J Card Fail. 2023; 29:246–254. doi: 10.1016/j.cardfail.2022.10.426CrossrefMedlineGoogle Scholar
    • 71. Hamo CE, Kwak L, Wang D, Florido R, Echouffo-Tcheugui JB, Blumenthal RS, Loehr L, Matsushita K, Nambi V, Ballantyne CM, et al. Heart failure risk associated with severity of modifiable heart failure risk factors: the ARIC study.J Am Heart Assoc. 2022; 11:e021583. doi: 10.1161/JAHA.121.021583LinkGoogle Scholar
    • 72. Matsushita K, Sang Y, Chen J, Ballew SH, Shlipak M, Coresh J, Peralta CA, Woodward M. Novel “predictor patch” method for adding predictors using estimates from outside data sets: a proof-of-concept study adding kidney measures to cardiovascular mortality prediction.Circ J. 2019; 83:1876–1882. doi: 10.1253/circj.CJ-19-0320CrossrefMedlineGoogle Scholar
    • 73. O’Brien MJ, Zhang Y, Bailey SC, Khan SS, Ackermann RT, Ali MK, Benoit SR, Imperatore G, Holliday CS, Bullard KM. Screening for prediabetes and diabetes: clinical performance and implications for health equity.Am J Prev Med. 2023; 64:814–823. doi: 10.1016/j.amepre.2023.01.007CrossrefMedlineGoogle Scholar
    • 74. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options.Circulation. 2021; 143:1157–1172. doi: 10.1161/CIRCULATIONAHA.120.050686LinkGoogle Scholar
    • 75. Moise N, Cené CW, Tabak RG, Young DR, Mills KT, Essien UR, Anderson CA, Lopez-Jimenez F; American Heart Association Council on Epidemiology and Prevention; Council on Hypertension; and Stroke Council. Leveraging implementation science for cardiovascular health equity: a scientific statement from the American Heart Association.Circulation. 2022; 146:e260–e278. doi: 10.1161/CIR.0000000000001096LinkGoogle Scholar
    • 76. Murray R, Zimmerman T, Agarwal A, Palevsky PM, Quaggin S, Rosas SE, Kramer H. Kidney-related research in the United States: a position statement from the National Kidney Foundation and the American Society of Nephrology.Am J Kidney Dis. 2021; 78:161–167. doi: 10.1053/j.ajkd.2021.04.006CrossrefMedlineGoogle Scholar
    • 77. Khan SS, Ning H, Sinha A, Wilkins J, Allen NB, Vu THT, Berry JD, Lloyd-Jones DM, Sweis R. Cigarette smoking and competing risks for fatal and nonfatal cardiovascular disease subtypes across the life course.J Am Heart Assoc. 2021; 10:e021751. doi: 10.1161/JAHA.121.021751LinkGoogle Scholar
    • 78. Berry JD, Dyer A, Cai X, Garside DB, Ning H, Thomas A, Greenland P, Van Horn L, Tracy RP, Lloyd-Jones DM. Lifetime risks of cardiovascular disease.N Engl J Med. 2012; 366:321–329. doi: 10.1056/NEJMoa1012848CrossrefMedlineGoogle Scholar
    • 79. Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, Sweis RN, Lloyd-Jones DM. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity.JAMA Cardiol. 2018; 3:280–287. doi: 10.1001/jamacardio.2018.0022CrossrefMedlineGoogle Scholar
    • 80. Rangaswami J, Mathew RO. Mitigating cardiovascular disease risk in patients with type 2 diabetes and chronic kidney disease-an unmet need with promising solutions.JAMA Cardiol. 2023; 8:742–743. doi: 10.1001/jamacardio.2023.1512CrossrefMedlineGoogle Scholar
    • 81. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N. Impact of diabetes on cardiovascular disease risk and all-cause mortality in older men: influence of age at onset, diabetes duration, and established and novel risk factors.Arch Intern Med. 2011; 171:404–410. doi: 10.1001/archinternmed.2011.2CrossrefMedlineGoogle Scholar
    • 82. Lu Y, Li SX, Liu Y, Rodriguez F, Watson KE, Dreyer RP, Khera R, Murugiah K, D’Onofrio G, Spatz ES, et al. Sex-specific risk factors associated with first acute myocardial infarction in young adults.JAMA Netw Open. 2022; 5:e229953. doi: 10.1001/jamanetworkopen.2022.9953CrossrefMedlineGoogle Scholar
    • 83. Tromp J, Paniagua SMA, Lau ES, Allen NB, Blaha MJ, Gansevoort RT, Hillege HL, Lee DE, Levy D, Vasan RS, et al. Age dependent associations of risk factors with heart failure: pooled population based cohort study.BMJ. 2021; 372:n461. doi: 10.1136/bmj.n461CrossrefMedlineGoogle Scholar
    • 84. Navar AM, Fine LJ, Ambrosius WT, Brown A, Douglas PS, Johnson K, Khera AV, Lloyd-Jones D, Michos ED, Mujahid M, et al. Earlier treatment in adults with high lifetime risk of cardiovascular diseases: what prevention trials are feasible and could change clinical practice? Report of a National Heart, Lung, and Blood Institute (NHLBI) Workshop.Am J Prev Cardiol. 2022; 12:100430. doi: 10.1016/j.ajpc.2022.100430CrossrefMedlineGoogle Scholar
    • 85. Stone NJ, Smith SC, Orringer CE, Rigotti NA, Navar AM, Khan SS, Jones DW, Goldberg R, Mora S, Blaha M. Managing atherosclerotic cardiovascular risk in young adults: JACC state-of-the-art review.J Am Coll Cardiol. 2022; 79:819–836. doi: 10.1016/j.jacc.2021.12.016CrossrefMedlineGoogle Scholar
    • 86. Liu K, Wilkins JT, Colangelo LA, Lloyd-Jones DM. Does lowering low-density lipoprotein cholesterol with statin restore low risk in middle-aged adults? Analysis of the observational MESA study.J Am Heart Assoc. 2021; 10:e019695.LinkGoogle Scholar
    • 87. Medina-Inojosa JR, Somers VK, Garcia M, Thomas RJ, Allison T, Chaudry R, Wood-Wentz CM, Bailey KR, Mulvagh SL, Lopez-Jimenez F. Performance of the ACC/AHA pooled cohort cardiovascular risk equations in clinical practice.J Am Coll Cardiol. 2023; 82:1499–1508. doi: 10.1016/j.jacc.2023.07.018CrossrefMedlineGoogle Scholar
    • 88. Ukoha EP, Snavely ME, Hahn MU, Steinauer JE, Bryant AS. Toward the elimination of race-based medicine: replace race with racism as preeclampsia risk factor.Am J Obstet Gynecol. 2022; 227:593–596. doi: 10.1016/j.ajog.2022.05.048CrossrefMedlineGoogle Scholar
    • 89. Khera A, Budoff MJ, O’Donnell CJ, Ayers CA, Locke J, de Lemos JA, Massaro JM, McClelland RL, Taylor A, Levine BD. Astronaut cardiovascular health and risk modification (Astro-CHARM) coronary calcium atherosclerotic cardiovascular disease risk calculator.Circulation. 2018; 138:1819–1827. doi: 10.1161/CIRCULATIONAHA.118.033505LinkGoogle Scholar
    • 90. Gore MO, Ayers CR, Khera A, Defilippi CR, Wang TJ, Seliger SL, Nambi V, Selvin E, Berry JD, Hundley WG, et al. Combining biomarkers and imaging for short-term assessment of cardiovascular disease risk in apparently healthy adults.J Am Heart Assoc. 2020; 9:e015410. doi: 10.1161/JAHA.119.015410LinkGoogle Scholar

    eLetters(0)

    eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

    Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.