Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association
The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations in a single document for clinicians caring for adult patients with acute arterial ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 Acute Ischemic Stroke (AIS) Guidelines and are an update of the 2018 AIS Guidelines.
Methods—
Members of the writing group were appointed by the American Heart Association (AHA) Stroke Council’s Scientific Statements Oversight Committee, representing various areas of medical expertise. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. An update of the 2013 AIS Guidelines was originally published in January 2018. This guideline was approved by the AHA Science Advisory and Coordinating Committee and the AHA Executive Committee. In April 2018, a revision to these guidelines, deleting some recommendations, was published online by the AHA. The writing group was asked review the original document and revise if appropriate. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent to 14 peer reviewers. The writing group evaluated the peer reviewers’ comments and revised when appropriate. The current final document was approved by all members of the writing group except when relationships with industry precluded members from voting and by the governing bodies of the AHA. These guidelines use the American College of Cardiology/AHA 2015 Class of Recommendations and Level of Evidence and the new AHA guidelines format.
Results—
These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings.
Conclusions—
These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
New high-quality evidence has produced major changes in the evidence-based treatment of acute ischemic stroke (AIS) since the publication of the guidelines for the early management of patients with acute ischemic stroke in 2013.1 Much of this new evidence has been incorporated into American Heart Association (AHA) focused updates, guidelines, or scientific statements on specific topics relating to the management of patients with AIS since 2013. The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. These guidelines address prehospital care, urgent and emergency evaluation and treatment with intravenous (IV) and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are often begun during the initial hospitalization. We have restricted our recommendations to adults and to secondary prevention measures that are appropriately instituted within the first 2 weeks. We have not included recommendations for cerebral venous sinus thrombosis because these were covered in a 2011 scientific statement and there is no new evidence that would change those conclusions.2
An independent Evidence Review Committee was commissioned to perform a systematic review of a limited number of clinical questions identified in conjunction with the writing group, the results of which were considered by the writing group for incorporation into the “2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke” (2018 AIS Guidelines)2a and this 2019 update. The systematic reviews for the 2018 AIS Guidelines have been previously published.3,4
These guidelines use the American College of Cardiology (ACC)/AHA Class of Recommendations (COR) and Level of Evidence (LOE) format shown in Table 1. New or revised recommendations that supersede previous guideline recommendations are accompanied by 250-word knowledge bytes and data supplement tables summarizing the key studies supporting the recommendations in place of extensive text. These data supplement tables can be found in Data Supplement 1 and literature search information for all data supplement tables can be found in Data Supplement 2. Because this guideline represents an update of the 2018 AIS Guidelines, the term “New Recommendation” refers to recommendations that are new to either the 2018 AIS Guidelines or to this 2019 update. Existing recommendations that are unchanged are reiterated with reference to the previous publication. These previous publications and their abbreviations used in this document are listed in Table 2. When there is no new pertinent evidence for these unchanged recommendations, no knowledge byte or data supplement is provided. For some unchanged recommendations, there are new pertinent data that support the existing recommendation, and these are provided. Additional abbreviations used in this guideline are listed in Table 3.
Table 1. Applying ACC/AHA Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)
Table 1. Applying ACC/AHA Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)
Table 2. Guidelines, Policies, and Statements Relevant to the Management of AIS
Document Title
Year Published
Abbreviation Used in This Document
“Recommendations for the Implementation of Telemedicine Within Stroke Systems of Care: A Policy Statement From the American Heart Association”5
2009
N/A
“Diagnosis and Management of Cerebral Venous Thrombosis: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”2
2011
N/A
“Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association”1
2013
2013 AIS Guidelines
“Interactions Within Stroke Systems of Care: A Policy Statement From the American Heart Association/American Stroke Association”6
2013
2013 Stroke Systems of Care
“2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society”7
2014
N/A
“Recommendations for the Management of Cerebral and Cerebellar Infarction With Swelling: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”8
2014
2014 Brain Swelling
“Palliative and End-of-Life Care in Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”9
2014
2014 Palliative Care
“Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association”10
2014
2014 Secondary Prevention
“Clinical Performance Measures for Adults Hospitalized With Acute Ischemic Stroke: Performance Measures for Healthcare Professionals From the American Heart Association/American Stroke Association”11
2014
N/A
“Part 15: First Aid: 2015 American Heart Association and American Red Cross Guidelines Update for First Aid”12
2015
2015 CPR/ECC
“2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association”13
2015
2015 Endovascular
“Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”14
2015
2015 IV Alteplase
“Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association”15
2016
2016 Rehab Guidelines
“Poststroke Depression: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”16
2017
N/A
“Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”17
2017
N/A
“2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines”18
2018
N/A
“2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines”19
2018
2018 Cholesterol Guidelines
AACVPR indicates American Association of Cardiovascular and Pulmonary Rehabilitation; AAPA, American Academy of Physician Assistants; ABC, Association of Black Cardiologists; ACC, American College of Cardiology; ACPM, American College of Preventive Medicine; ADA, American Diabetes Association; AGS, American Geriatrics Society; AHA, American Heart Association; AIS, acute ischemic stroke; APhA, American Pharmacists Association; ASH, American Society of Hypertension; ASPC, American Society for Preventive Cardiology; CPR, cardiopulmonary resuscitation; ECC, emergency cardiovascular care; HRS, Heart Rhythm Society; IV, intravenous; N/A, not applicable; NLA, National Lipid Association; NMA, National Medical Association; and PCNA, Preventive Cardiovascular Nurses Association.
Table 3. Abbreviations in This Guideline
ACC
American College of Cardiology
AHA
American Heart Association
AIS
Acute ischemic stroke
ARD
Absolute risk difference
ASA
American Stroke Association
ASCVD
Atherosclerotic cardiovascular disease
ASPECTS
Alberta Stroke Program Early Computed Tomography Score
BP
Blood pressure
CEA
Carotid endarterectomy
CeAD
Cervical artery dissection
CMB
Cerebral microbleed
COR
Class of recommendation
CPAP
Continuous positive airway pressure
CS
Conscious sedation
CT
Computed tomography
CTA
Computed tomographic angiography
CTP
Computed tomographic perfusion
DTN
Door-to-needle
DVT
Deep vein thrombosis
DW-MRI
Diffusion-weighted magnetic resonance imaging
ED
Emergency department
EMS
Emergency medical services
EVT
Endovascular therapy
GA
General anesthesia
GWTG
Get With The Guidelines
HBO
Hyperbaric oxygen
HR
Hazard ratio
HT
Hemorrhagic transformation
ICH
Intracerebral hemorrhage
IPC
Intermittent pneumatic compression
IV
Intravenous
LDL-C
Low-density lipoprotein cholesterol
LMWH
Low-molecular-weight heparin
LOE
Level of evidence
LVO
Large vessel occlusion
M1
Middle cerebral artery segment 1
M2
Middle cerebral artery segment 2
M3
Middle cerebral artery segment 3
MCA
Middle cerebral artery
MI
Myocardial infarction
MR
Magnetic resonance
MRA
Magnetic resonance angiography
MRI
Magnetic resonance imaging
mRS
Modified Rankin Scale
mTICI
Modified Thrombolysis in Cerebral Infarction
NCCT
Noncontrast computed tomography
NIHSS
National Institutes of Health Stroke Scale
NINDS
National Institute of Neurological Disorders and Stroke
OR
Odds ratio
OSA
Obstructive sleep apnea
PFO
Patent foramen ovale
RCT
Randomized clinical trial
RR
Relative risk
rt-PA
Recombinant tissue-type plasminogen activator
SBP
Systolic blood pressure
sICH
Symptomatic intracerebral hemorrhage
TIA
Transient ischemic attack
UFH
Unfractionated heparin
Members of the writing committee were appointed by the AHA Stroke Council’s Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the AHA conflict-of-interest policy was maintained throughout the writing and consensus process. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. Writing group members accepted topics relevant to their areas of expertise, reviewed the stroke literature with emphasis on publications since the prior guidelines, and drafted recommendations. Draft recommendations and supporting evidence were discussed by the writing group, and the revised recommendations for each topic were reviewed by a designated writing group member. The full writing group then evaluated the complete guidelines. The members of the writing group unanimously approved all recommendations except when relations with industry precluded members voting. Prerelease review of the draft 2018 guidelines was performed by 4 expert peer reviewers and by the members of the Stroke Council’s Scientific Statements Oversight Committee and Stroke Council Leadership Committee. The 2018 AIS Guidelines were approved by the AHA Science Advisory and Coordinating Committee on November 29, 2017, and by the AHA Executive Committee on December 11, 2017. It was published online January 24, 2018. On April 18, 2018, the AHA published a revision to the AIS Guidelines online, deleting 7 specific recommendations and all of Section 6, In-Hospital Institution of Secondary Prevention. The writing group was asked to review the entire guideline, including the deleted recommendations. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials (RCTs) with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent out to 14 peer reviewers. The writing group evaluated the peer reviewers’ comments and revised when appropriate. This revised document was reviewed by Stroke Council’s Scientific Statements Oversight Committee and the AHA Science Advisory and Coordinating Committee. To allow these guidelines to be as timely as possible, RCTs addressing AIS published between November 2018 and April 2019 were reviewed by the writing group. Modifications of Section 3.5.6., Recommendation 1, Section 3.6., Recommendation 4, and Section 3.7.2., Recommendation 2 resulted. To allow these modifications to be incorporated, the standard peer review process was abbreviated, with review provided by the members of the Stroke Council’s Scientific Statements Oversight Committee and by liaisons from the endorsing organizations listed on the masthead. The list of these reviewers is provided at the end of the guideline. The final document was approved by the AHA Science Advisory and Coordinating Committee and Executive Committee.
These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. They will not be applicable to all patients. Local resources and expertise, specific clinical circumstances and patient preferences, and evidence published since the issuance of these guidelines are some of the additional factors that should be considered when making individual patient care decisions. In many instances, only limited data exist demonstrating the urgent need for continued research on treatment of AIS.
A focused update addressing data from additional relevant recent RCTs is in process.
1. Prehospital Stroke Management and Systems of Care
1.1. Prehospital Systems
1.2. EMS Assessment and Management
1.3. EMS Systems
1.4. Hospital Stroke Capabilities
1.5. Hospital Stroke Teams
1.6. Telemedicine
1.7. Organization and Integration of Components
1.8. Establishment of Data Repositories
1.9. Stroke System Care Quality Improvement Process
2. Emergency Evaluation and Treatment
2.1. Stroke Scales
Table 4. National Institutes of Health Stroke Scale
3. General Supportive Care and Emergency Treatment
3.1. Airway, Breathing, and Oxygenation
3.2. Blood Pressure
Table 5. Options to Treat Arterial Hypertension in Patients With AIS Who Are Candidates for Emergency Reperfusion Therapy*
Table 5. Options to Treat Arterial Hypertension in Patients With AIS Who Are Candidates for Emergency Reperfusion Therapy*
3.3. Temperature
3.4. Blood Glucose
3.5. IV Alteplase
Table 6. Management of Symptomatic Intracranial Bleeding Occurring Within 24 Hours After Administration of IV Alteplase for Treatment of AIS
Table 6. Management of Symptomatic Intracranial Bleeding Occurring Within 24 Hours After Administration of IV Alteplase for Treatment of AIS
Table 7. Management of Orolingual Angioedema Associated With IV Alteplase Administration for AIS
Table 7. Management of Orolingual Angioedema Associated With IV Alteplase Administration for AIS
Table 8. Eligibility Recommendations for IV Alteplase in Patients With AIS
Table 8. Eligibility Recommendations for IV Alteplase in Patients With AIS
Table 9. Treatment of AIS: IV Administration of Alteplase
Infuse 0.9 mg/kg (maximum dose 90 mg) over 60 min, with 10% of the dose given as a bolus over 1 min.
Admit the patient to an intensive care or stroke unit for monitoring.
If the patient develops severe headache, acute hypertension, nausea, or vomiting or has a worsening neurological examination, discontinue the infusion (if IV alteplase is being administered) and obtain emergency head CT scan.
Measure BP and perform neurological assessments every 15 min during and after IV alteplase infusion for 2 h, then every 30 min for 6 h, then hourly until 24 h after IV alteplase treatment.
Increase the frequency of BP measurements if SBP is >180 mm Hg or if DBP is >105 mm Hg; administer antihypertensive medications to maintain BP at or below these levels (Table 5).
Delay placement of nasogastric tubes, indwelling bladder catheters, or intra-arterial pressure catheters if the patient can be safely managed without them.
Obtain a follow-up CT or MRI scan at 24 h after IV alteplase before starting anticoagulants or antiplatelet agents.
AIS indicates acute ischemic stroke; BP, blood pressure; CT, computed tomography; DBP, diastolic blood pressure; IV, intravenous; MRI, magnetic resonance imaging; and SBP, systolic blood pressure.
3.11. Volume Expansion/Hemodilution, Vasodilators, and Hemodynamic Augmentation
3.12. Neuroprotective Agents
3.13. Emergency Carotid Endarterectomy Carotid Angioplasty and Stenting Without Intracranial Clot
3.14. Other
4. In-Hospital Management of AIS: General Supportive Care
4.1. Stroke Units
4.2 Head Positioning
4.3. Supplemental Oxygen
Note: Recommendations in this section are repeated from Section 3.1 because they apply to in-hospital management as well.
4.4. Blood Pressure
Note: Recommendation 1 in this section is repeated from Section 3.2 because it applies to in-hospital management as well.
4.5. Temperature
Note: Recommendations in this section are repeated from Section 3.3 because they apply to in-hospital management as well.
4.6. Glucose
Note: Recommendations in this section are repeated from Section 3.4 because they apply to in-hospital management as well.
4.7. Dysphagia
4.8. Nutrition
4.9. Deep Vein Thrombosis Prophylaxis
4.10. Depression Screening
4.11. Other
4.12. Rehabilitation
5. In-Hospital Management of AIS: Treatment of Acute Complications
5.1. Brain Swelling
5.2. Seizures
6. In-Hospital Institution of Secondary Stroke Prevention
The recommendations in this section reference other current AHA guidelines for secondary stroke prevention where applicable (Table 10). These other guidelines should be referred to for further information on secondary stroke prevention not covered in this document. These other guidelines are updated regularly, and the most recent versions should be used.
Table 10. Guidelines Relevant to Secondary Stroke Prevention
Document Title
Year Published
Abbreviation Used in This Document
“Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association”10
2014
2014 Secondary Prevention
“2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines”18
2017
N/A
“2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines”19
2018
2018 Cholesterol Guidelines
AACVPR indicates American Association of Cardiovascular and Pulmonary Rehabilitation; AAPA, American Academy of Physician Assistants; ABC, Association of Black Cardiologists; ACC, American College of Cardiology; ACPM, American College of Preventive Medicine; ADA, American Diabetes Association; AGS, American Geriatrics Society; AHA, American Heart Association; APhA, American Pharmacists Association; ASH, American Society of Hypertension; ASPC, American Society for Preventive Cardiology; N/A, not applicable; NLA, National Lipid Association; NMA, National Medical Association; and PCNA, Preventive Cardiovascular Nurses Association.
This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10 000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity or owns $10 000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.
Stock holdings in various pharma companies in a managed investment portfolio (myself)*; stock holdings in various pharma companies in a managed investment portfolio (family)*
This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10 000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10 000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.
*Modest.
†Significant.
Footnotes
The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.
This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on September 12, 2019, and the American Heart Association Executive Committee on October 3, 2019. A copy of the document is available at https://professional.heart.org/statements by using either “Search for Guidelines & Statements” or the “Browse by Topic” area. To purchase additional reprints, call 843-216-2533 or email kelle.ramsay@wolterskluwer.com.
The American Heart Association requests that this document be cited as follows: Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; on behalf of the American Heart Association Stroke Council. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–e418 doi: 10.1161/STR.0000000000000211.
The expert peer review of AHA-commissioned documents (eg, scientific statements, clinical practice guidelines, systematic reviews) is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit https://professional.heart.org/statements. Select the “Guidelines & Statements” drop-down menu, then click “Publication Development.”
1. Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW, Qureshi AI, Rosenfield K, et al; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2013; 44:870–947. doi: 10.1161/STR.0b013e318284056aLinkGoogle Scholar
2. Saposnik G, Barinagarrementeria F, Brown RD, Bushnell CD, Cucchiara B, Cushman M, deVeber G, Ferro JM, Tsai FY; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2011; 42:1158–1192. doi: 10.1161/STR.0b013e31820a8364LinkGoogle Scholar
2a. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; on behalf of the American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published corrections appear in Stroke. 2018;49:e138 and Stroke. 2018;49:e233-234].Stroke. 2018; 49:e46–e99. doi: 10.1161/STR.0000000000000158LinkGoogle Scholar
3. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec DB; on behalf of the American Heart Association Stroke Council. Effect of dysphagia screening strategies on clinical outcomes after stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke [published correction appears in Stroke. 2018;49:e140].Stroke. 2018; 49:e123–e128. doi: 10.1161/STR.0000000000000159LinkGoogle Scholar
4. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec DB; on behalf of the American Heart Association Stroke Council. Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke [published correction appears in Stroke. 2018;49:e139].Stroke. 2018; 49:e111–e122. doi: 10.1161/STR.0000000000000160LinkGoogle Scholar
5. Schwamm LH, Audebert HJ, Amarenco P, Chumbler NR, Frankel MR, George MG, Gorelick PB, Horton KB, Kaste M, Lackland DT, et al; on behalf of the American Heart Association Stroke Council; Council on Epidemiology and Prevention; Interdisciplinary Council on Peripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association.Stroke. 2009; 40:2635–2660. doi: 10.1161/STROKEAHA.109.192361LinkGoogle Scholar
6. Higashida R, Alberts MJ, Alexander DN, Crocco TJ, Demaerschalk BM, Derdeyn CP, Goldstein LB, Jauch EC, Mayer SA, Meltzer NM, et al; on behalf of the American Heart Association Advocacy Coordinating Committee. Interactions within stroke systems of care: a policy statement from the American Heart Association/American Stroke Association.Stroke. 2013; 44:2961–84. doi: 10.1161/STR.0b013e3182a6d2b2LinkGoogle Scholar
7. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.Circulation. 2014; 130:2071–2104. doi: 10.1161/CIR.0000000000000040LinkGoogle Scholar
8. Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, Schwab S, Smith EE, Tamargo RJ, Wintermark M; on behalf of the American Heart Association Stroke Council. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2014; 45:1222–1238. doi: 10.1161/01.str.0000441965.15164.d6LinkGoogle Scholar
9. Holloway RG, Arnold RM, Creutzfeldt CJ, Lewis EF, Lutz BJ, McCann RM, Rabinstein AA, Saposnik G, Sheth KN, Zahuranec DB, et al; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Clinical Cardiology. Palliative and end-of-life care in stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2014; 45:1887–1916. doi: 10.1161/STR.0000000000000015LinkGoogle Scholar
10. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, Fang MC, Fisher M, Furie KL, Heck DV, et al; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2014; 45:2160–2236. doi: 10.1161/STR.0000000000000024LinkGoogle Scholar
11. Smith EE, Saver JL, Alexander DN, Furie KL, Hopkins LN, Katzan IL, Mackey JS, Miller EL, Schwamm LH, Williams LS; on behalf of the AHA/ASA Stroke Performance Oversight Committee. Clinical performance measures for adults hospitalized with acute ischemic stroke: performance measures for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2014; 45:3472–3498. doi: 10.1161/STR.0000000000000045LinkGoogle Scholar
12. Singletary EM, Charlton NP, Epstein JL, Ferguson JD, Jensen JL, MacPherson AI, Pellegrino JL, Smith WW, Swain JM, Lojero-Wheatley LF, et al. Part 15: first aid: 2015 American Heart Association and American Red Cross Guidelines Update for First Aid.Circulation. 2015; 132(suppl 2):S574–S589. doi: 10.1161/CIR.0000000000000269LinkGoogle Scholar
13. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, et al; on behalf of the American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2015; 46:3020–3035. doi: 10.1161/STR.0000000000000074LinkGoogle Scholar
14. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, et al; on behalf of the American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in Stroke. 2016;47:e262].Stroke. 2016; 47:581–641. doi: 10.1161/STR.0000000000000086LinkGoogle Scholar
15. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, et al; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in Stroke. 2017;48:e78 and Stroke. 2017;48:e369].Stroke. 2016; 47:e98–e169. doi: 10.1161/STR.0000000000000098AbstractGoogle Scholar
16. Towfighi A, Ovbiagele B, El Husseini N, Hackett ML, Jorge RE, Kissela BM, Mitchell PH, Skolarus LE, Whooley MA, Williams LS; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2017; 48:e30–e43. doi: 10.1161/STR.0000000000000113LinkGoogle Scholar
17. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, Kim LJ, Mayer SA, Sheth KN, Schwamm LH; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Quality of Care and Outcomes Research. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2017; 48:e343–e361. doi: 10.1161/STR.0000000000000152LinkGoogle Scholar
18. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Hypertension. 2018;71:e140–e144].Hypertension. 2018; 71:e13–e115. doi: 10.1161/HYP.0000000000000065LinkGoogle Scholar
19. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Circulation. 2019;139:e1186].Circulation. 2019; 139:e1082–e1143. doi: 10.1161/CIR.0000000000000625LinkGoogle Scholar
20. Ojike N, Ravenell J, Seixas A, Masters-Israilov A, Rogers A, Jean-Louis G, Ogedegbe G, McFarlane SI. Racial disparity in stroke awareness in the US: an analysis of the 2014 National Health Interview Survey.J Neurol Neurophysiol. 2016; 7:365.CrossrefMedlineGoogle Scholar
21. Ekundayo OJ, Saver JL, Fonarow GC, Schwamm LH, Xian Y, Zhao X, Hernandez AF, Peterson ED, Cheng EM. Patterns of emergency medical services use and its association with timely stroke treatment: findings from Get With The Guidelines–Stroke.Circ Cardiovasc Qual Outcomes. 2013; 6:262–269. doi: 10.1161/CIRCOUTCOMES.113.000089LinkGoogle Scholar
22. Mochari-Greenberger H, Xian Y, Hellkamp AS, Schulte PJ, Bhatt DL, Fonarow GC, Saver JL, Reeves MJ, Schwamm LH, Smith EE. Racial/ethnic and sex differences in emergency medical services transport among hospitalized US stroke patients: analysis of the national Get With The Guidelines-Stroke Registry.J Am Heart Assoc. 2015; 4:e002099. doi: 10.1161/JAHA.115.002099LinkGoogle Scholar
23. Berglund A, Svensson L, Wahlgren N, von Euler M; HASTA Collaborators. Face Arm Speech Time Test use in the prehospital setting, better in the ambulance than in the emergency medical communication center.Cerebrovasc Dis. 2014; 37:212–216. doi: 10.1159/000358116CrossrefMedlineGoogle Scholar
24. De Luca A, Giorgi Rossi P, Villa GF; Stroke Group Italian Society Pre Hospital Emergency Services. The use of Cincinnati Prehospital Stroke Scale during telephone dispatch interview increases the accuracy in identifying stroke and transient ischemic attack symptoms.BMC Health Serv Res. 2013; 13:513. doi: 10.1186/1472-6963-13-513CrossrefMedlineGoogle Scholar
25. Lin CB, Peterson ED, Smith EE, Saver JL, Liang L, Xian Y, Olson DM, Shah BR, Hernandez AF, Schwamm LH, et al. Emergency medical service hospital prenotification is associated with improved evaluation and treatment of acute ischemic stroke.Circ Cardiovasc Qual Outcomes. 2012; 5:514–522. doi: 10.1161/CIRCOUTCOMES.112.965210LinkGoogle Scholar
26. Rudd M, Buck D, Ford GA, Price CI. A systematic review of stroke recognition instruments in hospital and prehospital settings.Emerg Med J. 2016; 33:818–822. doi: 10.1136/emermed-2015-205197CrossrefMedlineGoogle Scholar
27. Kothari RU, Pancioli A, Liu T, Brott T, Broderick J. Cincinnati Prehospital Stroke Scale: reproducibility and validity.Ann Emerg Med. 1999; 33:373–378. doi: 10.1016/s0196-0644(99)70299-4CrossrefMedlineGoogle Scholar
28. Kidwell CS, Saver JL, Schubert GB, Eckstein M, Starkman S. Design and retrospective analysis of the Los Angeles Prehospital Stroke Screen (LAPSS).Prehosp Emerg Care. 1998; 2:267–273.CrossrefMedlineGoogle Scholar
29. Nor AM, Davis J, Sen B, Shipsey D, Louw SJ, Dyker AG, Davis M, Ford GA. The Recognition of Stroke in the Emergency Room (ROSIER) scale: development and validation of a stroke recognition instrument.Lancet Neurol. 2005; 4:727–734. doi: 10.1016/S1474-4422(05)70201-5CrossrefMedlineGoogle Scholar
30. Harbison J, Hossain O, Jenkinson D, Davis J, Louw SJ, Ford GA. Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test.Stroke. 2003; 34:71–76. doi: 10.1161/01.str.0000044170.46643.5eLinkGoogle Scholar
31. Katz BS, McMullan JT, Sucharew H, Adeoye O, Broderick JP. Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale.Stroke. 2015; 46:1508–1512. doi: 10.1161/STROKEAHA.115.008804LinkGoogle Scholar
32. Lima FO, Silva GS, Furie KL, Frankel MR, Lev MH, Camargo ÉC, Haussen DC, Singhal AB, Koroshetz WJ, Smith WS, et al. Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes.Stroke. 2016; 47:1997–2002. doi: 10.1161/STROKEAHA.116.013301LinkGoogle Scholar
33. Perez de la Ossa N, Carrera D, Gorchs M, Querol M, Millan M, Gomis M, Dorado L, Lopez-Cancio E, Hernandez-Perez M, Chicharro V, et al. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale.Stroke. 2014; 45:87–91.LinkGoogle Scholar
34. Hastrup S, Damgaard D, Johnsen SP, Andersen G. Prehospital acute stroke severity scale to predict large artery occlusion: design and comparison with other scales.Stroke. 2016; 47:1772–1776. doi: 10.1161/STROKEAHA.115.012482LinkGoogle Scholar
35. Singer OC, Dvorak F, du Mesnil de Rochemont R, Lanfermann H, Sitzer M, Neumann-Haefelin T. A simple 3-item stroke scale: comparison with the National Institutes of Health Stroke Scale and prediction of middle cerebral artery occlusion.Stroke. 2005; 36:773–776. doi: 10.1161/01.STR.0000157591.61322.dfLinkGoogle Scholar
36. Nazliel B, Starkman S, Liebeskind DS, Ovbiagele B, Kim D, Sanossian N, Ali L, Buck B, Villablanca P, Vinuela F, et al. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions.Stroke. 2008; 39:2264–2267. doi: 10.1161/STROKEAHA.107.508127LinkGoogle Scholar
37. Carrera D, Campbell BC, Cortés J, Gorchs M, Querol M, Jiménez X, Millán M, Dávalos A, Pérez de la Ossa N. Predictive value of modifications of the prehospital rapid arterial occlusion evaluation scale for large vessel occlusion in patients with acute stroke.J Stroke Cerebrovasc Dis. 2017; 26:74–77. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.032CrossrefMedlineGoogle Scholar
38. Kim JT, Chung PW, Starkman S, Sanossian N, Stratton SJ, Eckstein M, Pratt FD, Conwit R, Liebeskind DS, Sharma L, et al; on behalf of the FAST-MAG Trial (Field Administration of Stroke Therapy–Magnesium) Nurse-Coordinators and Investigators. Field validation of the Los Angeles Motor Scale as a tool for paramedic assessment of stroke severity.Stroke. 2017; 48:298–306. doi: 10.1161/STROKEAHA.116.015247LinkGoogle Scholar
39. McMullan JT, Katz B, Broderick J, Schmit P, Sucharew H, Adeoye O. Prospective prehospital evaluation of the Cincinnati Stroke Triage Assessment Tool.Prehosp Emerg Care. 2017; 21:481–488.CrossrefMedlineGoogle Scholar
41. Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke.JAMA. 2013; 309:2480–2488.CrossrefMedlineGoogle Scholar
42. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, et al; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis.JAMA. 2016; 316:1279–1288. doi: 10.1001/jama.2016.13647CrossrefMedlineGoogle Scholar
43. Ganesh A, Lindsay P, Fang J, Kapral MK, Côté R, Joiner I, Hakim AM, Hill MD. Integrated systems of stroke care and reduction in 30-day mortality: a retrospective analysis.Neurology. 2016; 86:898–904. doi: 10.1212/WNL.0000000000002443CrossrefMedlineGoogle Scholar
44. Man S, Cox M, Patel P, Smith EE, Reeves MJ, Saver JL, Bhatt DL, Xian Y, Schwamm LH, Fonarow GC. Differences in acute ischemic stroke quality of care and outcomes by primary stroke center certification organization.Stroke. 2017; 48:412–419. doi: 10.1161/STROKEAHA.116.014426LinkGoogle Scholar
45. Scott PA, Meurer WJ, Frederiksen SM, Kalbfleisch JD, Xu Z, Haan MN, Silbergleit R, Morgenstern LB; INSTINCT Investigators. A multilevel intervention to increase community hospital use of alteplase for acute stroke (INSTINCT): a cluster-randomised controlled trial.Lancet Neurol. 2013; 12:139–148. doi: 10.1016/S1474-4422(12)70311-3CrossrefMedlineGoogle Scholar
46. Dirks M, Niessen LW, van Wijngaarden JD, Koudstaal PJ, Franke CL, van Oostenbrugge RJ, Huijsman R, Lingsma HF, Minkman MM, Dippel DW; for the PRomoting ACute Thrombolysis in Ischemic StrokE (PRACTISE) Investigators. Promoting thrombolysis in acute ischemic stroke.Stroke. 2011; 42:1325–1330. doi: 10.1161/STROKEAHA.110.596940LinkGoogle Scholar
47. Haesebaert J, Nighoghossian N, Mercier C, Termoz A, Porthault S, Derex L, Gueugniaud PY, Bravant E, Rabilloud M, Schott AM; on behalf of the AVC II Trial Group. Improving access to thrombolysis and inhospital management times in ischemic stroke: a stepped-wedge randomized trial.Stroke. 2018; 49:405–411. doi: 10.1161/STROKEAHA.117.018335LinkGoogle Scholar
48. Tissue plasminogen activator for acute ischemic stroke: the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.N Engl J Med. 1995; 333:1581–1587.CrossrefMedlineGoogle Scholar
49. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, et al; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.N Engl J Med. 2008; 359:1317–1329. doi: 10.1056/NEJMoa0804656CrossrefMedlineGoogle Scholar
50. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, et al; ECASS, ATLANTIS, NINDS and EPITHET rt-PA Study Group. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials.Lancet. 2010; 375:1695–1703. doi: 10.1016/S0140-6736(10)60491-6CrossrefMedlineGoogle Scholar
51. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, et al; DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.N Engl J Med. 2018; 378:11–21. doi: 10.1056/NEJMoa1706442CrossrefMedlineGoogle Scholar
52. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart RA, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, et al; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging.N Engl J Med. 2018; 378:708–718. doi: 10.1056/NEJMoa1713973CrossrefMedlineGoogle Scholar
53. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Xian Y, Hernandez AF, Peterson ED, Schwamm LH. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative.JAMA. 2014; 311:1632–1640.CrossrefMedlineGoogle Scholar
54. Xian Y, Xu H, Lytle B, Blevins J, Peterson ED, Hernandez AF, Smith EE, Saver JL, Messe SR, Paulsen M, et al. Use of strategies to improve door-to-needle times with tissue-type plasminogen activator in acute ischemic stroke in clinical practice: findings from Target: Stroke.Circ Cardiovasc Qual Outcomes. 2017; 10:e003227.LinkGoogle Scholar
55. Demaerschalk BM, Bobrow BJ, Raman R, Ernstrom K, Hoxworth JM, Patel AC, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, et al; for the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) in Arizona–The Initial Mayo Clinic Experience (AZ TIME) Investigators. CT interpretation in a telestroke network: agreement among a spoke radiologist, hub vascular neurologist, and hub neuroradiologist.Stroke. 2012; 43:3095–3097. doi: 10.1161/STROKEAHA.112.666255LinkGoogle Scholar
56. Spokoyny I, Raman R, Ernstrom K, Demaerschalk BM, Lyden PD, Hemmen TM, Guzik AK, Chen JY, Meyer BC. Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network.J Stroke Cerebrovasc Dis. 2014; 23:511–515. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.023CrossrefMedlineGoogle Scholar
57. Puetz V, Bodechtel U, Gerber JC, Dzialowski I, Kunz A, Wolz M, Hentschel H, Schultheiss T, Kepplinger J, Schneider H, et al. Reliability of brain CT evaluation by stroke neurologists in telemedicine.Neurology. 2013; 80:332–338. doi: 10.1212/WNL.0b013e31827f07d0CrossrefMedlineGoogle Scholar
58. Demaerschalk BM, Raman R, Ernstrom K, Meyer BC. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials.Telemed J E Health. 2012; 18:230–237. doi: 10.1089/tmj.2011.0116CrossrefMedlineGoogle Scholar
59. Kepplinger J, Barlinn K, Deckert S, Scheibe M, Bodechtel U, Schmitt J. Safety and efficacy of thrombolysis in telestroke: a systematic review and meta-analysis.Neurology. 2016; 87:1344–1351. doi: 10.1212/WNL.0000000000003148CrossrefMedlineGoogle Scholar
60. Barlinn J, Gerber J, Barlinn K, Pallesen LP, Siepmann T, Zerna C, Wojciechowski C, Puetz V, von Kummer R, Reichmann H, et al. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study.Int J Stroke. 2017; 12:502–509. doi: 10.1177/1747493016681018CrossrefMedlineGoogle Scholar
61. Fong WC, Ismail M, Lo JW, Li JT, Wong AH, Ng YW, Chan PY, Chan AL, Chan GH, Fong KW, et al. Telephone and teleradiology-guided thrombolysis can achieve similar outcome as thrombolysis by neurologist on-site.J Stroke Cerebrovasc Dis. 2015; 24:1223–1228. doi: 10.1016/j.jstrokecerebrovasdis.2015.01.022CrossrefMedlineGoogle Scholar
61a. Day AL, Siddiqui AH, Meyers PM, Jovin TG, Derdeyn CP, Hoh BL, Riina H, Chan AL, Linfante I, Zaidat O, et al. Training standards in neuroendovascular surgery: program accreditation and practitioner certification.Stroke. 2017; 48:2318–2325.LinkGoogle Scholar
62. Vagal A, Meganathan K, Kleindorfer DO, Adeoye O, Hornung R, Khatri P. Increasing use of computed tomographic perfusion and computed tomographic angiograms in acute ischemic stroke from 2006 to 2010.Stroke. 2014; 45:1029–1034. doi: 10.1161/STROKEAHA.113.004332LinkGoogle Scholar
63. Demaerschalk BM, Yip TR. Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States.Stroke. 2005; 36:2500–2503. doi: 10.1161/01.STR.0000185699.37843.14LinkGoogle Scholar
64. Demaerschalk BM, Durocher DL. How diagnosis-related group 559 will change the US Medicare cost reimbursement ratio for stroke centers.Stroke. 2007; 38:1309–1312. doi: 10.1161/01.STR.0000260185.74694.a7LinkGoogle Scholar
65. Penaloza-Ramos MC, Sheppard JP, Jowett S, Barton P, Mant J, Quinn T, Mellor RM, Sims D, Sandler D, et al; on behalf of the Birmingham and Black Country Collaborations for Leadership in Applied Health Research and Care Investigators. Cost-effectiveness of optimizing acute stroke care services for thrombolysis.Stroke. 2014; 45:553–562. doi: 10.1161/STROKEAHA.113.003216LinkGoogle Scholar
66. Tan Tanny SP, Busija L, Liew D, Teo S, Davis SM, Yan B. Cost-effectiveness of thrombolysis within 4.5 hours of acute ischemic stroke: experience from Australian stroke center.Stroke. 2013; 44:2269–2274. doi: 10.1161/STROKEAHA.113.001295LinkGoogle Scholar
67. Health Quality Ontario. Mechanical thrombectomy in patients with acute ischemic stroke: a health technology assessment.Ont Health Technol Assess Ser. 2016; 16:1–79.Google Scholar
68. Ganesalingam J, Pizzo E, Morris S, Sunderland T, Ames D, Lobotesis K. Cost-utility analysis of mechanical thrombectomy using stent retrievers in acute ischemic stroke.Stroke. 2015; 46:2591–2598. doi: 10.1161/STROKEAHA.115.009396LinkGoogle Scholar
68a. Tong X, Wiltz JL, George MG, Odom EC, Coleman King SM, Chang T, Xiaoping Y, Paul Coverdell National Acute Stroke Program Team, Meritt RK. A decade of improvement in door-to-needle time among acute ischemic stroke patients, 2008 to 2017.Circ Cardiovasc Qual Outcomes. 2018; 11:e004981. doi: 10.1161/CIRCOUTCOMES.118.004981LinkGoogle Scholar
68b. Wiedmann S, Heuschmann PU, Hillmann S, Busse O, Wietholter H, Walter GM, Seidel G, Misselwitz B, Janssen A, Berger K, et al; German Stroke Registers Study Group. The quality of acute stroke care: an analysis of evidence-based indicators in 260 000 patients.Dtsch Arztebl Int. 2014; 111:759–765. doi: 10.3238/arztebl.2014.0759MedlineGoogle Scholar
68c. Centers for Disease Control and Prevention. Use of a registry to improve acute stroke care: seven states, 2005–2009.MMWR Morb Mortal Wkly Rep. 2011; 60:206–210.MedlineGoogle Scholar
69. Song S, Fonarow GC, Olson DM, Liang L, Schulte PJ, Hernandez AF, Peterson ED, Reeves MJ, Smith EE, Schwamm LH, et al. Association of Get With The Guidelines–Stroke program participation and clinical outcomes for Medicare beneficiaries with ischemic stroke.Stroke. 2016; 47:1294–1302.LinkGoogle Scholar
69a. Hills NK, Johnston SC. Duration of hospital participation in a nationwide stroke registry is associated with improved quality of care.BMC Neurol. 2006; 6:20.CrossrefMedlineGoogle Scholar
70. NINDS t-PA Stroke Study Group. Generalized efficacy of t-PA for acute stroke: subgroup analysis of the NINDS t-PA Stroke Trial.Stroke. 1997; 28:2119–2125.LinkGoogle Scholar
71. Adams HP, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, Woolson RF, Hansen MD. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST).Neurology. 1999; 53:126–131. doi: 10.1212/wnl.53.1.126CrossrefMedlineGoogle Scholar
72. Frankel MR, Morgenstern LB, Kwiatkowski T, Lu M, Tilley BC, Broderick JP, Libman R, Levine SR, Brott T. Predicting prognosis after stroke: a placebo group analysis from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial.Neurology. 2000; 55:952–959. doi: 10.1212/wnl.55.7.952CrossrefMedlineGoogle Scholar
73. Wahlgren N, Ahmed N, Eriksson N, Aichner F, Bluhmki E, Dávalos A, Erilä T, Ford GA, Grond M, Hacke W, et al; for the Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy Investigators. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy (SITS-MOST).Stroke. 2008; 39:3316–3322. doi: 10.1161/STROKEAHA.107.510768LinkGoogle Scholar
74. Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, Haley EC, Grotta J, Marler J. Improved reliability of the NIH Stroke Scale using video training: NINDS TPA Stroke Study Group.Stroke. 1994; 25:2220–2226. doi: 10.1161/01.str.25.11.2220LinkGoogle Scholar
75. Josephson SA, Hills NK, Johnston SC. NIH Stroke Scale reliability in ratings from a large sample of clinicians.Cerebrovasc Dis. 2006; 22:389–395. doi: 10.1159/000094857CrossrefMedlineGoogle Scholar
76. Lyden P, Raman R, Liu L, Emr M, Warren M, Marler J. National Institutes of Health Stroke Scale certification is reliable across multiple venues.Stroke. 2009; 40:2507–2511. doi: 10.1161/STROKEAHA.108.532069LinkGoogle Scholar
77. Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, Pan W, Olson DM, Hernandez AF, Peterson ED, et al. Relationship of National Institutes of Health Stroke Scale to 30-day mortality in Medicare beneficiaries with acute ischemic stroke.J Am Heart Assoc. 2012; 1:42–50.LinkGoogle Scholar
78. Lees KR, Emberson J, Blackwell L, Bluhmki E, Davis SM, Donnan GA, Grotta JC, Kaste M, von Kummer R, Lansberg MG, et al; on behalf of the Stroke Thrombolysis Trialists’ Collaborators Group. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials.Stroke. 2016; 47:2373–2379. doi: 10.1161/STROKEAHA.116.013644LinkGoogle Scholar
79. Aghaebrahim A, Streib C, Rangaraju S, Kenmuir CL, Giurgiutiu DV, Horev A, Saeed Y, Callaway CW, Guyette FX, Martin-Gill C, et al. Streamlining door to recanalization processes in endovascular stroke therapy.J Neurointerv Surg. 2017; 9:340–345. doi: 10.1136/neurintsurg-2016-012324CrossrefMedlineGoogle Scholar
80. Messe SR, Khatri P, Reeves MJ, Smith EE, Saver JL, Bhatt DL, Grau-Sepulveda MV, Cox M, Peterson ED, Fonarow GC, et al. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry.Neurology. 2016; 87:1565–1574.CrossrefMedlineGoogle Scholar
81. Zaidi SF, Shawver J, Espinosa Morales A, Salahuddin H, Tietjen G, Lindstrom D, Parquette B, Adams A, Korsnack A, Jumaa MA. Stroke care: initial data from a county-based bypass protocol for patients with acute stroke.J Neurointerv Surg. 2017; 9:631–635. doi: 10.1136/neurintsurg-2016-012476CrossrefMedlineGoogle Scholar
82. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.Lancet. 2007; 369:293–298. doi: 10.1016/S0140-6736(07)60151-2CrossrefMedlineGoogle Scholar
83. Barber PA, Hill MD, Eliasziw M, Demchuk AM, Pexman JH, Hudon ME, Tomanek A, Frayne R, Buchan AM; ASPECTS Study Group. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging.J Neurol Neurosurg Psychiatry. 2005; 76:1528–1533. doi: 10.1136/jnnp.2004.059261CrossrefMedlineGoogle Scholar
84. Anderson JL, Heidenreich PA, Barnett PG, Creager MA, Fonarow GC, Gibbons RJ, Halperin JL, Hlatky MA, Jacobs AK, Mark DB, et al. ACC/AHA statement on cost/value methodology in clinical practice guidelines and performance measures: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force on Practice Guidelines.Circulation. 2014; 129:2329–2345. doi: 10.1161/CIR.0000000000000042LinkGoogle Scholar
85. Wardlaw JM, Seymour J, Cairns J, Keir S, Lewis S, Sandercock P. Immediate computed tomography scanning of acute stroke is cost-effective and improves quality of life.Stroke. 2004; 35:2477–2483. doi: 10.1161/01.STR.0000143453.78005.44LinkGoogle Scholar
86. Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, Butman JA, Patronas N, Alger JR, Latour LL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage.JAMA. 2004; 292:1823–1830. doi: 10.1001/jama.292.15.1823CrossrefMedlineGoogle Scholar
87. Fiebach JB, Schellinger PD, Gass A, Kucinski T, Siebler M, Villringer A, Olkers P, Hirsch JG, Heiland S, Wilde P, et al; for the Kompetenznetzwerk Schlaganfall B5. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging.Stroke. 2004; 35:502–506. doi: 10.1161/01.STR.0000114203.75678.88LinkGoogle Scholar
88. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, Cheripelli B, Cho TH, Fazekas F, Fiehler J, et al; WAKE-UP Investigators. MRI-guided thrombolysis for stroke with unknown time of onset.N Engl J Med. 2018; 379:611–622. doi: 10.1056/NEJMoa1804355CrossrefMedlineGoogle Scholar
89. Charidimou A, Shoamanesh A; International META-MICROBLEEDS Initiative. Clinical relevance of microbleeds in acute stroke thrombolysis: comprehensive meta-analysis.Neurology. 2016; 87:1534–1541. doi: 10.1212/WNL.0000000000003207CrossrefMedlineGoogle Scholar
90. Tsivgoulis G, Zand R, Katsanos AH, Turc G, Nolte CH, Jung S, Cordonnier C, Fiebach JB, Scheitz JF, Klinger-Gratz PP, et al. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis.JAMA Neurol. 2016; 73:675–683. doi: 10.1001/jamaneurol.2016.0292CrossrefMedlineGoogle Scholar
91. Zand R, Tsivgoulis G, Singh M, McCormack M, Goyal N, Ishfaq MF, Shahripour RB, Nearing K, Elijovich L, Alexandrov AW, et al. Cerebral microbleeds and risk of intracerebral hemorrhage post intravenous thrombolysis.J Stroke Cerebrovasc Dis. 2017; 26:538–544. doi: 10.1016/j.jstrokecerebrovasdis.2016.11.127CrossrefMedlineGoogle Scholar
92. Wang S, Lv Y, Zheng X, Qiu J, Chen HS. The impact of cerebral microbleeds on intracerebral hemorrhage and poor functional outcome of acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis.J Neurol. 2017; 264:1309–1319. doi: 10.1007/s00415-016-8339-1Google Scholar
93. Charidimou A, Turc G, Oppenheim C, Yan S, Scheitz JF, Erdur H, Klinger-Gratz PP, El-Koussy M, Takahashi W, Moriya Y, et al. Microbleeds, cerebral hemorrhage, and functional outcome after stroke thrombolysis: individual patient data meta-analysis.Stroke. 2017; 48:2084–2090.LinkGoogle Scholar
94. Chacon-Portillo MA, Llinas RH, Marsh EB. Cerebral microbleeds shouldn’t dictate treatment of acute stroke: a retrospective cohort study evaluating risk of intracerebral hemorrhage.BMC Neurol. 2018; 18:33. doi: 10.1186/s12883-018-1029-0Google Scholar
95. Hirai T, Korogi Y, Ono K, Nagano M, Maruoka K, Uemura S, Takahashi M. Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography.AJNR Am J Neuroradiol. 2002; 23:93–101.MedlineGoogle Scholar
96. Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C, Saver J, Sayre J. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography.AJNR Am J Neuroradiol. 2005; 26:1012–1021.MedlineGoogle Scholar
97. Ehrlich ME, Turner HL, Currie LJ, Wintermark M, Worrall BB, Southerland AM. Safety of computed tomographic angiography in the evaluation of patients with acute stroke: a single-center experience.Stroke. 2016; 47:2045–2050. doi: 10.1161/STROKEAHA.116.013973LinkGoogle Scholar
98. Aulicky P, Mikulík R, Goldemund D, Reif M, Dufek M, Kubelka T. Safety of performing CT angiography in stroke patients treated with intravenous thrombolysis.J Neurol Neurosurg Psychiatry. 2010; 81:783–787. doi: 10.1136/jnnp.2009.184002CrossrefMedlineGoogle Scholar
99. Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, et al. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy.AJNR Am J Neuroradiol. 2010; 31:817–821. doi: 10.3174/ajnr.A1927CrossrefMedlineGoogle Scholar
100. Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke.AJNR Am J Neuroradiol. 2008; 29:1826–1830. doi: 10.3174/ajnr.A1257CrossrefMedlineGoogle Scholar
101. Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM. Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography.Stroke. 2007; 38:2364–2366. doi: 10.1161/STROKEAHA.107.482778LinkGoogle Scholar
102. Josephson SA, Dillon WP, Smith WS. Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging.Neurology. 2005; 64:1805–1806. doi: 10.1212/01.WNL.0000161845.69114.62CrossrefMedlineGoogle Scholar
103. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, Lingsma HF, Sprengers ME, Jenniskens SF, Lycklama À Nijeholt GJ, et al; on behalf of the MR CLEAN Investigators. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke.Stroke. 2016; 47:768–776. doi: 10.1161/STROKEAHA.115.011788LinkGoogle Scholar
104. Menon BK, Qazi E, Nambiar V, Foster LD, Yeatts SD, Liebeskind D, Jovin TG, Goyal M, Hill MD, Tomsick TA, et al; for the Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III Trial.Stroke. 2015; 46:1239–1244. doi: 10.1161/STROKEAHA.115.009009LinkGoogle Scholar
105. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, et al; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke.N Engl J Med. 2015; 372:1019–1030. doi: 10.1056/NEJMoa1414905CrossrefMedlineGoogle Scholar
106. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó M, et al; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke.N Engl J Med. 2015; 372:2296–2306. doi: 10.1056/NEJMoa1503780CrossrefMedlineGoogle Scholar
107. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, et al; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke.N Engl J Med. 2015; 372:2285–2295. doi: 10.1056/NEJMoa1415061CrossrefMedlineGoogle Scholar
108. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, et al; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection.N Engl J Med. 2015; 372:1009–1018. doi: 10.1056/NEJMoa1414792CrossrefMedlineGoogle Scholar
109. Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, Guillemin F; THRACE Investigators. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial.Lancet Neurol. 2016; 15:1138–1147. doi: 10.1016/S1474-4422(16)30177-6CrossrefMedlineGoogle Scholar
110. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, et al; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke.N Engl J Med. 2015; 372:11–20. doi: 10.1056/NEJMoa1411587CrossrefMedlineGoogle Scholar
111. Saber H, Silver B, Santillan A, Azarpazhooh MR, Misra V, Behrouz R. Role of emergent chest radiography in evaluation of hyperacute stroke.Neurology. 2016; 87:782–785. doi: 10.1212/WNL.0000000000002964CrossrefMedlineGoogle Scholar
112. Roffe C, Nevatte T, Sim J, Bishop J, Ives N, Ferdinand P, Gray R; Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative Group. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: the Stroke Oxygen Study randomized clinical trial.JAMA. 2017; 318:1125–1135. doi: 10.1001/jama.2017.11463CrossrefMedlineGoogle Scholar
113. Bennett MH, Weibel S, Wasiak J, Schnabel A, French C, Kranke P. Hyperbaric oxygen therapy for acute ischaemic stroke.Cochrane Database Syst Rev. 2014:CD004954. doi: 10.1002/14651858.CD004954.pub3MedlineGoogle Scholar
114. Heyboer M, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified.Adv Wound Care (New Rochelle). 2017; 6:210–224. doi: 10.1089/wound.2016.0718CrossrefMedlineGoogle Scholar
115. Heyboer M, Jennings S, Grant WD, Ojevwe C, Byrne J, Wojcik SM. Seizure incidence by treatment pressure in patients undergoing hyperbaric oxygen therapy.Undersea Hyperb Med. 2014; 41:379–385.MedlineGoogle Scholar
116. Wohlfahrt P, Krajcoviechova A, Jozifova M, Mayer O, Vanek J, Filipovsky J, Cifkova R. Low blood pressure during the acute period of ischemic stroke is associated with decreased survival.J Hypertens. 2015; 33:339–345. doi: 10.1097/HJH.0000000000000414CrossrefMedlineGoogle Scholar
117. Vemmos KN, Tsivgoulis G, Spengos K, Zakopoulos N, Synetos A, Manios E, Konstantopoulou P, Mavrikakis M. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke.J Intern Med. 2004; 255:257–265. doi: 10.1046/j.1365-2796.2003.01291.xCrossrefMedlineGoogle Scholar
118. Okumura K, Ohya Y, Maehara A, Wakugami K, Iseki K, Takishita S. Effects of blood pressure levels on case fatality after acute stroke.J Hypertens. 2005; 23:1217–1223. doi: 10.1097/01.hjh.0000170385.76826.4aCrossrefMedlineGoogle Scholar
119. Stead LG, Gilmore RM, Decker WW, Weaver AL, Brown RDInitial emergency department blood pressure as predictor of survival after acute ischemic stroke.Neurology. 2005; 65:1179–1183. doi: 10.1212/01.wnl.0000180939.24845.22CrossrefMedlineGoogle Scholar
120. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A. Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome.Stroke. 2004; 35:520–526. doi: 10.1161/01.STR.0000109769.22917.B0LinkGoogle Scholar
121. Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA; for the IST Collaborative Group. Blood pressure and clinical outcomes in the International Stroke Trial.Stroke. 2002; 33:1315–1320. doi: 10.1161/01.str.0000014509.11540.66LinkGoogle Scholar
122. Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Short-term blood pressure variability in acute stroke: post hoc analysis of the Controlling Hypertension and Hypotension Immediately Post Stroke and Continue or Stop Post-Stroke Antihypertensives Collaborative Study trials.Stroke. 2015; 46:1518–1524. doi: 10.1161/STROKEAHA.115.009078LinkGoogle Scholar
123. Muscari A, Puddu GM, Serafini C, Fabbri E, Vizioli L, Zoli M. Predictors of short-term improvement of ischemic stroke.Neurol Res. 2013; 35:594–601. doi: 10.1179/1743132813Y.0000000181CrossrefMedlineGoogle Scholar
124. Visvanathan A, Dennis M, Whiteley W. Parenteral fluid regimens for improving functional outcome in people with acute stroke.Cochrane Database Syst Rev. 2015:CD011138. doi: 10.1002/14651858.CD011138.pub2MedlineGoogle Scholar
125. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, Jeerakathil T, Campbell BC, Barber PA, Bladin C, et al; for the EPITHET Investigators. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation.Stroke. 2010; 41:72–77. doi: 10.1161/STROKEAHA.109.563767LinkGoogle Scholar
126. Perini F, De Boni A, Marcon M, Bolgan I, Pellizzari M, Dionisio LD. Systolic blood pressure contributes to intracerebral haemorrhage after thrombolysis for ischemic stroke.J Neurol Sci. 2010; 297:52–54. doi: 10.1016/j.jns.2010.06.025CrossrefMedlineGoogle Scholar
127. Toni D, Ahmed N, Anzini A, Lorenzano S, Brozman M, Kaste M, Mikulik R, Putaala J, Wahlgren N; SITS Investigators. Intravenous thrombolysis in young stroke patients: results from the SITS-ISTR.Neurology. 2012; 78:880–887. doi: 10.1212/WNL.0b013e31824d966bCrossrefMedlineGoogle Scholar
128. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, Wahlgren N, Ahmed N; for the SITS Investigators. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: Safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score.Stroke. 2012; 43:1524–1531. doi: 10.1161/STROKEAHA.111.644815LinkGoogle Scholar
129. Wu W, Huo X, Zhao X, Liao X, Wang C, Pan Y, Wang Y, Wang Y; TIMS-CHINA Investigators. Relationship between blood pressure and outcomes in acute ischemic stroke patients administered lytic medication in the TIMS-China Study.PLoS One. 2016; 11:e0144260. doi: 10.1371/journal.pone.0144260CrossrefMedlineGoogle Scholar
130. Endo K, Kario K, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, Furui E, Kimura K, Hasegawa Y, Okada Y, et al. Impact of early blood pressure variability on stroke outcomes after thrombolysis: the SAMURAI rt-PA Registry.Stroke. 2013; 44:816–818. doi: 10.1161/STROKEAHA.112.681007LinkGoogle Scholar
131. Waltimo T, Haapaniemi E, Surakka IL, Melkas S, Sairanen T, Sibolt G, Tatlisumak T, Strbian D. Post-thrombolytic blood pressure and symptomatic intracerebral hemorrhage.Eur J Neurol. 2016; 23:1757–1762. doi: 10.1111/ene.13118CrossrefMedlineGoogle Scholar
132. Liu K, Yan S, Zhang S, Guo Y, Lou M. Systolic blood pressure variability is associated with severe hemorrhagic transformation in the early stage after thrombolysis.Transl Stroke Res. 2016; 7:186–191. doi: 10.1007/s12975-016-0458-6CrossrefMedlineGoogle Scholar
133. Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, Finfer S, Beasley R, Hyam J, Menon D, et al. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection.Intensive Care Med. 2015; 41:823–832. doi: 10.1007/s00134-015-3676-6CrossrefMedlineGoogle Scholar
134. Lyden P, Hemmen T, Grotta J, Rapp K, Ernstrom K, Rzesiewicz T, Parker S, Concha M, Hussain S, Agarwal S, et al. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2).Stroke. 2016; 47:2888–2895. doi: 10.1161/STROKEAHA.116.014200LinkGoogle Scholar
135. Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, Dippel DW, Kappelle LJ, van der Worp HB. COOLIST (Cooling for Ischemic Stroke Trial): a multicenter, open, randomized, phase ii, clinical trial.Stroke. 2017; 48:219–221. doi: 10.1161/STROKEAHA.116.014757LinkGoogle Scholar
136. Piironen K, Tiainen M, Mustanoja S, Kaukonen KM, Meretoja A, Tatlisumak T, Kaste M. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: a randomized controlled trial.Stroke. 2014; 45:486–491. doi: 10.1161/STROKEAHA.113.003180LinkGoogle Scholar
137. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD; for the ICTuS-L Investigators. Intravenous Thrombolysis Plus Hypothermia for Acute Treatment of Ischemic Stroke (ICTuS-L): final results.Stroke. 2010; 41:2265–2270. doi: 10.1161/STROKEAHA.110.592295LinkGoogle Scholar
138. Sloan MA, Price TR, Petito CK, Randall AM, Solomon RE, Terrin ML, Gore J, Collen D, Kleiman N, Feit F. Clinical features and pathogenesis of intracerebral hemorrhage after rt-PA and heparin therapy for acute myocardial infarction: the Thrombolysis in Myocardial Infarction (TIMI) II Pilot and Randomized Clinical Trial combined experience.Neurology. 1995; 45:649–658. doi: 10.1212/wnl.45.4.649CrossrefMedlineGoogle Scholar
139. Mahaffey KW, Granger CB, Sloan MA, Green CL, Gore JM, Weaver WD, White HD, Simoons ML, Barbash GI, Topol EJ, et al. Neurosurgical evacuation of intracranial hemorrhage after thrombolytic therapy for acute myocardial infarction: experience from the GUSTO-I trial: Global Utilization of Streptokinase and Tissue-Plasminogen Activator (tPA) for Occluded Coronary Arteries.Am Heart J. 1999; 138(pt 1):493–499. doi: 10.1016/s0002-8703(99)70152-3CrossrefMedlineGoogle Scholar
140. Goldstein JN, Marrero M, Masrur S, Pervez M, Barrocas AM, Abdullah A, Oleinik A, Rosand J, Smith EE, Dzik WH, et al. Management of thrombolysis-associated symptomatic intracerebral hemorrhage.Arch Neurol. 2010; 67:965–969. doi: 10.1001/archneurol.2010.175CrossrefMedlineGoogle Scholar
141. French KF, White J, Hoesch RE. Treatment of intracerebral hemorrhage with tranexamic acid after thrombolysis with tissue plasminogen activator.Neurocrit Care. 2012; 17:107–111. doi: 10.1007/s12028-012-9681-5CrossrefMedlineGoogle Scholar
142. Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment.JAMA Neurol. 2014; 71:1181–1185. doi: 10.1001/jamaneurol.2014.1210CrossrefMedlineGoogle Scholar
143. Yaghi S, Haggiagi A, Sherzai A, Marshall RS, Agarwal S. Use of recombinant factor VIIa in symptomatic intracerebral hemorrhage following intravenous thrombolysis.Clin Pract. 2015; 5:756. doi: 10.4081/cp.2015.756CrossrefMedlineGoogle Scholar
144. Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S, Sands KA, Noorian AR, Blum CA, Chaudhary S, et al. Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study.JAMA Neurol. 2015; 72:1451–1457. doi: 10.1001/jamaneurol.2015.2371CrossrefMedlineGoogle Scholar
145. Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, Silver B, Thompson B, Furie KL, Yaghi S. Therapies for hemorrhagic transformation in acute ischemic stroke.Curr Treat Options Neurol. 2017; 19:1. doi: 10.1007/s11940-017-0438-5CrossrefMedlineGoogle Scholar
146. Frontera JA, Lewin JJ, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, del Zoppo GJ, Kumar MA, Peerschke EI, Stiefel MF, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine.Neurocrit Care. 2016; 24:6–46. doi: 10.1007/s12028-015-0222-xCrossrefMedlineGoogle Scholar
147. Foster-Goldman A, McCarthy D. Angioedema from recombinant TPA administration: case report and pathophysiology review.Am J Ther. 2013; 20:691–693. doi: 10.1097/MJT.0b013e3182799083CrossrefMedlineGoogle Scholar
148. Gorski EM, Schmidt MJ. Orolingual angioedema with alteplase administration for treatment of acute ischemic stroke.J Emerg Med. 2013; 45:e25–e26. doi: 10.1016/j.jemermed.2013.02.004CrossrefMedlineGoogle Scholar
149. Lewis LM. Angioedema: etiology, pathophysiology, current and emerging therapies.J Emerg Med. 2013; 45:789–796. doi: 10.1016/j.jemermed.2013.03.045CrossrefMedlineGoogle Scholar
150. Lin SY, Tang SC, Tsai LK, Yeh SJ, Hsiao YJ, Chen YW, Chen KH, Yip BS, Shen LJ, Wu FL, et al. Orolingual angioedema after alteplase therapy of acute ischaemic stroke: incidence and risk of prior angiotensin-converting enzyme inhibitor use.Eur J Neurol. 2014; 21:1285–1291. doi: 10.1111/ene.12472CrossrefMedlineGoogle Scholar
151. Correia AS, Matias G, Calado S, Lourenço A, Viana-Baptista M. Orolingual angiodema associated with alteplase treatment of acute stroke: a reappraisal.J Stroke Cerebrovasc Dis. 2015; 24:31–40. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.045CrossrefMedlineGoogle Scholar
152. O’Carroll CB, Aguilar MI. Management of postthrombolysis hemorrhagic and orolingual angioedema complications.Neurohospitalist. 2015; 5:133–141. doi: 10.1177/1941874415587680CrossrefMedlineGoogle Scholar
153. Myslimi F, Caparros F, Dequatre-Ponchelle N, Moulin S, Gautier S, Girardie P, Cordonnier C, Bordet R, Leys D. Orolingual angioedema during or after thrombolysis for cerebral ischemia.Stroke. 2016; 47:1825–1830. doi: 10.1161/STROKEAHA.116.013334LinkGoogle Scholar
154. Pahs L, Droege C, Kneale H, Pancioli A. A novel approach to the treatment of orolingual angioedema after tissue plasminogen activator administration.Ann Emerg Med. 2016; 68:345–348. doi: 10.1016/j.annemergmed.2016.02.019CrossrefMedlineGoogle Scholar
155. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke.Cochrane Database Syst Rev. 2014:CD000213. doi: 10.1002/14651858.CD000213.pub3MedlineGoogle Scholar
156. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC, et al; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials.Lancet. 2004; 363:768–774. doi: 10.1016/S0140-6736(04)15692-4CrossrefMedlineGoogle Scholar
157. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis.Lancet. 2012; 379:2364–2372. doi: 10.1016/S0140-6736(12)60738-7CrossrefMedlineGoogle Scholar
158. Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, et al; SITS-MOST Investigators. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study.Lancet. 2007; 369:275–282. doi: 10.1016/S0140-6736(07)60149-4CrossrefMedlineGoogle Scholar
159. Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, et al; IST-3 Collaborative Group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial [IST-3]): a randomised controlled trial.Lancet. 2012; 379:2352–2363. doi: 10.1016/S0140-6736(12)60768-5CrossrefMedlineGoogle Scholar
160. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, Broderick JP, Chen X, Chen G, Sharma VK, et al; ENCHANTED Investigators and Coordinators. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke.N Engl J Med. 2016; 374:2313–2323. doi: 10.1056/NEJMoa1515510CrossrefMedlineGoogle Scholar
161. Khatri P, Tayama D, Cohen G, Lindley RI, Wardlaw JM, Yeatts SD, Broderick JP, Sandercock P; PRISMS and IST-3 Collaborative Groups. Effect of intravenous recombinant tissue-type plasminogen activator in patients with mild stroke in the Third International Stroke Trial-3: post hoc analysis.Stroke. 2015; 46:2325–2327. doi: 10.1161/STROKEAHA.115.009951LinkGoogle Scholar
162. National Institute of Neurological Disorders Stroke rtPA Stroke Study Group. Recombinant tissue plasminogen activator for minor strokes: the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study experience.Ann Emerg Med. 2005; 46:243–252. doi: 10.1016/j.annemergmed.2005.02.013Google Scholar
163. Ingall TJ, O’Fallon WM, Asplund K, Goldfrank LR, Hertzberg VS, Louis TA, Christianson TJ. Findings from the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial.Stroke. 2004; 35:2418–2424. doi: 10.1161/01.STR.0000140891.70547.56LinkGoogle Scholar
164. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, et al; Stroke Thrombolysis Trialists’ Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials.Lancet. 2014; 384:1929–1935. doi: 10.1016/S0140-6736(14)60584-5CrossrefMedlineGoogle Scholar
165. Bluhmki E, Chamorro A, Dávalos A, Machnig T, Sauce C, Wahlgren N, Wardlaw J, Hacke W. Stroke treatment with alteplase given 3.0-4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial.Lancet Neurol. 2009; 8:1095–1102. doi: 10.1016/S1474-4422(09)70264-9CrossrefMedlineGoogle Scholar
166. Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO, Toni D, Ringleb P; SITS Investigators. Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR.Lancet Neurol. 2010; 9:866–874. doi: 10.1016/S1474-4422(10)70165-4CrossrefMedlineGoogle Scholar
167. Romano JG, Smith EE, Liang L, Gardener H, Camp S, Shuey L, Cook A, Campo-Bustillo I, Khatri P, Bhatt DL, et al. Outcomes in mild acute ischemic stroke treated with intravenous thrombolysis: a retrospective analysis of the Get With the Guidelines-Stroke registry.JAMA Neurol. 2015; 72:423–431. doi: 10.1001/jamaneurol.2014.4354CrossrefMedlineGoogle Scholar
168. Khatri P, Kleindorfer DO, Devlin T, Sawyer RN, Starr M, Mejilla J, Broderick J, Chatterjee A, Jauch EC, Levine SR, et al; PRISMS Investigators. Effect of alteplase vs aspirin on functional outcome for patients with acute ischemic stroke and minor nondisabling neurologic deficits: the PRISMS randomized clinical trial.JAMA. 2018; 320:156–166. doi: 10.1001/jama.2018.8496CrossrefMedlineGoogle Scholar
169. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, Fonarow GC, Smith EE, Schwamm LH. Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from Get With The Guidelines–Stroke.Stroke. 2017; 48:686–691. doi: 10.1161/STROKEAHA.116.015412LinkGoogle Scholar
170. Qureshi AI, Ezzeddine MA, Nasar A, Suri MF, Kirmani JF, Janjua N, Divani AA. Is IV tissue plasminogen activator beneficial in patients with hyperdense artery sign?Neurology. 2006; 66:1171–1174. doi: 10.1212/01.wnl.0000208407.69544.5aCrossrefMedlineGoogle Scholar
171. IST Collaborative Group. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial.Lancet Neurol. 2015; 14:485–496. doi: 10.1016/S1474-4422(15)00012-5Google Scholar
172. Mair G, von Kummer R, Morris Z, von Heijne A, Bradey N, Cala L, Peeters A, Farrall AJ, Adami A, Potter G, et al; IST-3 Collaborative Group. Effect of alteplase on the CT hyperdense artery sign and outcome after ischemic stroke.Neurology. 2016; 86:118–125. doi: 10.1212/WNL.0000000000002236CrossrefMedlineGoogle Scholar
173. Adeoye O, Sucharew H, Khoury J, Tomsick T, Khatri P, Palesch Y, Schmit PA, Pancioli AM, Broderick JP; for the CLEAR-ER, IMS III, and ALIAS Part 2 Investigators. Recombinant tissue-type plasminogen activator plus eptifibatide versus recombinant tissue-type plasminogen activator alone in acute ischemic stroke: propensity score-matched post hoc analysis.Stroke. 2015; 46:461–464. doi: 10.1161/STROKEAHA.114.006743LinkGoogle Scholar
174. Adeoye O, Sucharew H, Khoury J, Vagal A, Schmit PA, Ewing I, Levine SR, Demel S, Eckerle B, Katz B, et al. Combined approach to lysis utilizing eptifibatide and recombinant tissue-type plasminogen activator in acute ischemic stroke: Full Dose Regimen Stroke Trial.Stroke. 2015; 46:2529–2533. doi: 10.1161/STROKEAHA.115.010260AbstractGoogle Scholar
175. Zinkstok SM, Roos YB; ARTIS Investigators. Early administration of aspirin in patients treated with alteplase for acute ischaemic stroke: a randomised controlled trial.Lancet. 2012; 380:731–737. doi: 10.1016/S0140-6736(12)60949-0CrossrefMedlineGoogle Scholar
176. Anderson CS, Huang Y, Lindley RI, Chen X, Arima H, Chen G, Li Q, Billot L, Delcourt C, Bath PM, et al; ENCHANTED Investigators and Coordinators. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial.Lancet. 2019; 393:877–888. doi: 10.1016/S0140-6736(19)30038-8CrossrefMedlineGoogle Scholar
177. Jeong HG, Kim BJ, Yang MH, Han MK, Bae HJ, Lee SH. Stroke outcomes with use of antithrombotics within 24 hours after recanalization treatment.Neurology. 2016; 87:996–1002. doi: 10.1212/WNL.0000000000003083CrossrefMedlineGoogle Scholar
178. Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, Yan B, Bush SJ, Dewey HM, Thijs V, et al; EXTEND-IA TNK Investigators. Tenecteplase versus alteplase before thrombectomy for ischemic stroke.N Engl J Med. 2018; 378:1573–1582. doi: 10.1056/NEJMoa1716405CrossrefMedlineGoogle Scholar
179. Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, Ford I, Muir KW. Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study.Lancet Neurol. 2015; 14:368–376. doi: 10.1016/S1474-4422(15)70017-7CrossrefMedlineGoogle Scholar
180. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, O’Brien B, Bladin C, McElduff P, Allen C, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke.N Engl J Med. 2012; 366:1099–1107. doi: 10.1056/NEJMoa1109842CrossrefMedlineGoogle Scholar
181. Haley EC, Thompson JL, Grotta JC, Lyden PD, Hemmen TG, Brown DL, Fanale C, Libman R, Kwiatkowski TG, Llinas RH, et al; for the Tenecteplase in Stroke Investigators. Phase IIB/III trial of tenecteplase in acute ischemic stroke: results of a prematurely terminated randomized clinical trial.Stroke. 2010; 41:707–711. doi: 10.1161/STROKEAHA.109.572040LinkGoogle Scholar
182. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial.Lancet Neurol. 2017; 16:781–788. doi: 10.1016/S1474-4422(17)30253-3CrossrefMedlineGoogle Scholar
183. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study.Lancet Neurol. 2009; 8:141–150. doi: 10.1016/S1474-4422(08)70267-9CrossrefMedlineGoogle Scholar
184. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, et al; for the DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase.Stroke. 2005; 36:66–73. doi: 10.1161/01.STR.0000149938.08731.2cLinkGoogle Scholar
185. von Kummer R, Mori E, Truelsen T, Jensen JS, Grønning BA, Fiebach JB, Lovblad KO, Pedraza S, Romero JM, Chabriat H, et al; for the DIAS-4 Investigators. Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 Trial (Efficacy and Safety Study of Desmoteplase to Treat Acute Ischemic Stroke).Stroke. 2016; 47:2880–2887. doi: 10.1161/STROKEAHA.116.013715LinkGoogle Scholar
186. Albers GW, von Kummer R, Truelsen T, Jensen JK, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, et al; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial.Lancet Neurol. 2015; 14:575–584. doi: 10.1016/S1474-4422(15)00047-2CrossrefMedlineGoogle Scholar
187. Nacu A, Kvistad CE, Naess H, Øygarden H, Logallo N, Assmus J, Waje-Andreassen U, Kurz KD, Neckelmann G, Thomassen L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population.Stroke. 2017; 48:335–341. doi: 10.1161/STROKEAHA.116.014644LinkGoogle Scholar
188. Alexandrov AV, Köhrmann M, Soinne L, Tsivgoulis G, Barreto AD, Demchuk AM, Sharma VK, Mikulik R, Muir KW, Brandt G, et al; CLOTBUST-ER Trial Investigators. Safety and efficacy of sonothrombolysis for acute ischaemic stroke: a multicentre, double-blind, phase 3, randomised controlled trial.Lancet Neurol. 2019; 18:338–347. doi: 10.1016/S1474-4422(19)30026-2Google Scholar
189. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, et al; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials.Lancet. 2016; 387:1723–1731. doi: 10.1016/S0140-6736(16)00163-XCrossrefMedlineGoogle Scholar
190. Campbell BC, Hill MD, Rubiera M, Menon BK, Demchuk A, Donnan GA, Roy D, Thornton J, Dorado L, Bonafe A, et al. Safety and efficacy of solitaire stent thrombectomy: individual patient data meta-analysis of randomized trials.Stroke. 2016; 47:798–806. doi: 10.1161/STROKEAHA.115.012360LinkGoogle Scholar
191. Bush CK, Kurimella D, Cross LJ, Conner KR, Martin-Schild S, He J, Li C, Chen J, Kelly T. Endovascular treatment with stent-retriever devices for acute ischemic stroke: a meta-analysis of randomized controlled trials.PLoS One. 2016; 11:e0147287. doi: 10.1371/journal.pone.0147287CrossrefMedlineGoogle Scholar
192. Turk AS, Siddiqui A, Fifi JT, De Leacy RA, Fiorella DJ, Gu E, Levy EI, Snyder KV, Hanel RA, Aghaebrahim A, et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial.Lancet. 2019; 393:998–1008. doi: 10.1016/S0140-6736(19)30297-1CrossrefMedlineGoogle Scholar
193. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, Saleme S, Costalat V, Bracard S, Desal H, et al; ASTER Trial Investigators. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial.JAMA. 2017; 318:443–452. doi: 10.1001/jama.2017.9644CrossrefMedlineGoogle Scholar
194. Nogueira RG, Frei D, Kirmani JF, Zaidat O, Lopes D, Turk AS, Heck D, Mason B, Haussen DC, Levy EI, et al; Penumbra Separator 3D Investigators. Safety and efficacy of a 3-dimensional stent retriever with aspiration-based thrombectomy vs aspiration-based thrombectomy alone in acute ischemic stroke intervention: a randomized clinical trial.JAMA Neurol. 2018; 75:304–311. doi: 10.1001/jamaneurol.2017.3967CrossrefMedlineGoogle Scholar
195. Lemmens R, Hamilton SA, Liebeskind DS, Tomsick TA, Demchuk AM, Nogueira RG, Marks MP, Jahan R, Gralla J, Yoo AJ, et al; DEFUSE 2, IMS III, STAR, and SWIFT Trialists; DEFUSE 2 IMS III STAR and SWIFT Trialists. Effect of endovascular reperfusion in relation to site of arterial occlusion.Neurology. 2016; 86:762–770. doi: 10.1212/WNL.0000000000002399CrossrefMedlineGoogle Scholar
196. Yoo AJ, Simonsen CZ, Prabhakaran S, Chaudhry ZA, Issa MA, Fugate JE, Linfante I, Liebeskind DS, Khatri P, Jovin TG, et al; for the Cerebral Angiographic Revascularization Grading Collaborators. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy.Stroke. 2013; 44:2509–2512. doi: 10.1161/STROKEAHA.113.001990LinkGoogle Scholar
197. Marks MP, Lansberg MG, Mlynash M, Kemp S, McTaggart R, Zaharchuk G, Bammer R, Albers GW; DEFUSE 2 Investigators. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome.J Neurointerv Surg. 2014; 6:724–728. doi: 10.1136/neurintsurg-2013-010973CrossrefMedlineGoogle Scholar
198. Berkhemer OA, van den Berg LA, Fransen PS, Beumer D, Yoo AJ, Lingsma HF, Schonewille WJ, van den Berg R, Wermer MJ, Boiten J, et al; MR CLEAN Investigators. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN.Neurology. 2016; 87:656–664. doi: 10.1212/WNL.0000000000002976CrossrefMedlineGoogle Scholar
199. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Sundeman H, Reinsfelt B, Ricksten SE. Hypotension during endovascular treatment of ischemic stroke is a risk factor for poor neurological outcome.Stroke. 2015; 46:2678–2680. doi: 10.1161/STROKEAHA.115.009808LinkGoogle Scholar
200. Schönenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, Nagel S, Klose C, Pfaff J, Bendszus M, et al. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial.JAMA. 2016; 316:1986–1996. doi: 10.1001/jama.2016.16623CrossrefMedlineGoogle Scholar
201. Simonsen CZ, Yoo AJ, Sørensen LH, Juul N, Johnsen SP, Andersen G, Rasmussen M. Effect of general anesthesia and conscious sedation during endovascular therapy on infarct growth and clinical outcomes in acute ischemic stroke: a randomized clinical trial.JAMA Neurol. 2018; 75:470–477. doi: 10.1001/jamaneurol.2017.4474CrossrefMedlineGoogle Scholar
202. Gory B, Haussen DC, Piotin M, Steglich-Arnholm H, Holtmannspötter M, Labreuche J, Kyheng M, Taschner C, Eiden S, Nogueira RG, et al; Thrombectomy In TANdem lesions (TITAN) investigators. Impact of intravenous thrombolysis and emergent carotid stenting on reperfusion and clinical outcomes in patients with acute stroke with tandem lesion treated with thrombectomy: a collaborative pooled analysis.Eur J Neurol. 2018; 25:1115–1120. doi: 10.1111/ene.13633Google Scholar
203. Delgado F, Oteros R, Jimenez-Gomez E, Bravo Rey I, Bautista MD, Valverde Moyano R. Half bolus dose of intravenous abciximab is safe and effective in the setting of acute stroke endovascular treatment.J Neurointerv Surg. 2019; 11:147–152. doi: 10.1136/neurintsurg-2018-014163Google Scholar
204. Heck DV, Brown MD. Carotid stenting and intracranial thrombectomy for treatment of acute stroke due to tandem occlusions with aggressive antiplatelet therapy may be associated with a high incidence of intracranial hemorrhage.J Neurointerv Surg. 2015; 7:170–175. doi: 10.1136/neurintsurg-2014-011224CrossrefMedlineGoogle Scholar
205. Ernst M, Butscheid F, Fiehler J, Wittkugel O, Alfke K, Jansen O, Petersen D, Koch C, Eckert B. Glycoprotein IIb/IIIa inhibitor bridging and subsequent endovascular therapy in vertebrobasilar occlusion in 120 patients.Clin Neuroradiol. 2016; 26:169–175. doi: 10.1007/s00062-014-0341-3CrossrefMedlineGoogle Scholar
206. Dippel DW, Majoie CB, Roos YB, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Lingsma HF, Koudstaal PJ, Treurniet KM, van den Berg LA, et al; for the MR CLEAN Investigators. Influence of device choice on the effect of intra-arterial treatment for acute ischemic stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands).Stroke. 2016; 47:2574–2581. doi: 10.1161/STROKEAHA.116.013929LinkGoogle Scholar
207. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke: International Stroke Trial Collaborative Group.Lancet. 1997; 349:1569–1581.CrossrefMedlineGoogle Scholar
208. CAST (Chinese Acute Stroke Trial) Collaborative Group. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke.Lancet. 1997; 349:1641–1649.CrossrefMedlineGoogle Scholar
210. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, et al; CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack.N Engl J Med. 2013; 369:11–19. doi: 10.1056/NEJMoa1215340CrossrefMedlineGoogle Scholar
211. Wang X, Zhao X, Johnston SC, Xian Y, Hu B, Wang C, Wang D, Liu L, Li H, Fang J, et al; CHANCE Investigators. Effect of clopidogrel with aspirin on functional outcome in TIA or minor stroke: CHANCE substudy.Neurology. 2015; 85:573–579. doi: 10.1212/WNL.0000000000001844CrossrefMedlineGoogle Scholar
212. Pan Y, Wang Y, Wang Y. Author response: risks and benefits of clopidogrel-aspirin in minor stroke or TIA: time course analysis of CHANCE.Neurology. 2017; 89:2121–2122. doi: 10.1212/WNL.0000000000004655Google Scholar
213. Wang Y, Pan Y, Zhao X, Li H, Wang D, Johnston SC, Liu L, Meng X, Wang A, Wang C, et alY; on behalf of the CHANCE Investigators. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) Trial: one-year outcomes.Circulation. 2015; 132:40–46. doi: 10.1161/CIRCULATIONAHA.114.014791LinkGoogle Scholar
214. Wang Y, Zhao X, Lin J, Li H, Johnston SC, Lin Y, Pan Y, Liu L, Wang D, Wang C, et al; CHANCE Investigators. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack.JAMA. 2016; 316:70–78. doi: 10.1001/jama.2016.8662CrossrefMedlineGoogle Scholar
215. Jing J, Meng X, Zhao X, Liu L, Wang A, Pan Y, Li H, Wang D, Johnston SC, Wang Y, et al. Dual antiplatelet therapy in transient ischemic attack and minor stroke with different infarction patterns: subgroup analysis of the CHANCE randomized clinical trial.JAMA Neurol. 2018; 75:711–719. doi: 10.1001/jamaneurol.2018.0247CrossrefMedlineGoogle Scholar
216. Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ, Kim AS, Lindblad AS, Palesch YY; Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA.N Engl J Med. 2018; 379:215–225. doi: 10.1056/NEJMoa1800410CrossrefMedlineGoogle Scholar
217. Siebler M, Hennerici MG, Schneider D, von Reutern GM, Seitz RJ, Röther J, Witte OW, Hamann G, Junghans U, Villringer A, et al. Safety of Tirofiban in Acute Ischemic Stroke: the SaTIS trial.Stroke. 2011; 42:2388–2392. doi: 10.1161/STROKEAHA.110.599662LinkGoogle Scholar
218. Pancioli AM, Broderick J, Brott T, Tomsick T, Khoury J, Bean J, del Zoppo G, Kleindorfer D, Woo D, Khatri P, et al; CLEAR Trial Investigators. The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial.Stroke. 2008; 39:3268–3276. doi: 10.1161/STROKEAHA.108.517656LinkGoogle Scholar
219. Johnston SC, Amarenco P. Ticagrelor versus aspirin in acute stroke or transient ischemic attack.N Engl J Med. 2016; 375:1395. doi: 10.1056/NEJMc1610106CrossrefMedlineGoogle Scholar
220. Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I. Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke.Cochrane Database Syst Rev. 2014:CD005208. doi: 10.1002/14651858.CD005208.pub3MedlineGoogle Scholar
221. Adams HP, Effron MB, Torner J, Dávalos A, Frayne J, Teal P, Leclerc J, Oemar B, Padgett L, Barnathan ES, et al; for the AbESTT-II Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II).Stroke. 2008; 39:87–99. doi: 10.1161/STROKEAHA.106.476648LinkGoogle Scholar
222. Mokin M, Kass-Hout T, Kass-Hout O, Radovic V, Siddiqui AH, Levy EI, Snyder KV. Intravenous heparin for the treatment of intraluminal thrombus in patients with acute ischemic stroke: a case series.J Neurointerv Surg. 2013; 5:144–150. doi: 10.1136/neurintsurg-2011-010134CrossrefMedlineGoogle Scholar
223. Vellimana AK, Kadkhodayan Y, Rich KM, Cross DT, Moran CJ, Zazulia AR, Lee JM, Chicoine MR, Dacey RG, Derdeyn CP, et al. Symptomatic patients with intraluminal carotid artery thrombus: outcome with a strategy of initial anticoagulation.J Neurosurg. 2013; 118:34–41. doi: 10.3171/2012.9.JNS12406CrossrefMedlineGoogle Scholar
224. Kate M, Gioia L, Buck B, Sivakumar L, Jeerakathil T, Shuaib A, Butcher K. Dabigatran therapy in acute ischemic stroke patients without atrial fibrillation.Stroke. 2015; 46:2685–2687. doi: 10.1161/STROKEAHA.115.010383LinkGoogle Scholar
225. Barreto AD, Alexandrov AV, Lyden P, Lee J, Martin-Schild S, Shen L, Wu TC, Sisson A, Pandurengan R, Chen Z, et al. The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: final results of a pilot safety study.Stroke. 2012; 43:770–775. doi: 10.1161/STROKEAHA.111.625574LinkGoogle Scholar
226. Barreto AD, Ford GA, Shen L, Pedroza C, Tyson J, Cai C, Rahbar MH, Grotta JC; on behalf of the ARTSS-2 Investigators. Randomized, multicenter trial of ARTSS-2 (Argatroban With Recombinant Tissue Plasminogen Activator for Acute Stroke).Stroke. 2017; 48:1608–1616. doi: 10.1161/STROKEAHA.117.016720LinkGoogle Scholar
227. Gioia LC, Kate M, Sivakumar L, Hussain D, Kalashyan H, Buck B, Bussiere M, Jeerakathil T, Shuaib A, Emery D, et al. Early rivaroxaban use after cardioembolic stroke may not result in hemorrhagic transformation: a prospective magnetic resonance imaging study.Stroke. 2016; 47:1917–1919. doi: 10.1161/STROKEAHA.116.013491LinkGoogle Scholar
228. Whiteley WN, Adams HP, Bath PM, Berge E, Sandset PM, Dennis M, Murray GD, Wong KS, Sandercock PA. Targeted use of heparin, heparinoids, or low-molecular-weight heparin to improve outcome after acute ischaemic stroke: an individual patient data meta-analysis of randomised controlled trials.Lancet Neurol. 2013; 12:539–545. doi: 10.1016/S1474-4422(13)70079-6CrossrefMedlineGoogle Scholar
229. Sandercock PA, Counsell C, Kane EJ. Anticoagulants for acute ischaemic stroke.Cochrane Database Syst Rev. 2015:CD000024.MedlineGoogle Scholar
230. Yi X, Lin J, Wang C, Zhang B, Chi W. Low-molecular-weight heparin is more effective than aspirin in preventing early neurologic deterioration and improving six-month outcome.J Stroke Cerebrovasc Dis. 2014; 23:1537–1544. doi: 10.1016/j.jstrokecerebrovasdis.2013.12.036CrossrefMedlineGoogle Scholar
232. Ginsberg MD, Palesch YY, Hill MD, Martin RH, Moy CS, Barsan WG, Waldman BD, Tamariz D, Ryckborst KJ; ALIAS and Neurological Emergencies Treatment Trials (NETT) Investigators. High-dose albumin treatment for acute ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-controlled trial.Lancet Neurol. 2013; 12:1049–1058. doi: 10.1016/S1474-4422(13)70223-0CrossrefMedlineGoogle Scholar
233. Martin RH, Yeatts SD, Hill MD, Moy CS, Ginsberg MD, Palesch YY; for the ALIAS Parts 1 and 2 and NETT Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: analysis of the combined data from parts 1 and 2.Stroke. 2016; 47:2355–2359. doi: 10.1161/STROKEAHA.116.012825LinkGoogle Scholar
234. Guluma KZ, Liebeskind DS, Raman R, Rapp KS, Ernstrom KB, Alexandrov AV, Shahripour RB, Barlinn K, Starkman S, Grunberg ID, et al. Feasibility and safety of using external counterpulsation to augment cerebral blood flow in acute ischemic stroke: the Counterpulsation to Upgrade Forward Flow in Stroke (CUFFS) Trial.J Stroke Cerebrovasc Dis. 2015; 24:2596–2604. doi: 10.1016/j.jstrokecerebrovasdis.2015.07.013Google Scholar
235. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, Conwit R, Liebeskind DS, Sung G, Kramer I, et al; FAST-MAG Investigators and Coordinators. Prehospital use of magnesium sulfate as neuroprotection in acute stroke.N Engl J Med. 2015; 372:528–536. doi: 10.1056/NEJMoa1408827CrossrefMedlineGoogle Scholar
237. Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2.Curr Cardiol Rep. 2010; 12:29–33. doi: 10.1007/s11886-009-0071-3CrossrefMedlineGoogle Scholar
238. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, et al; for the NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke.Stroke. 2009; 40:1359–1364. doi: 10.1161/STROKEAHA.109.547547LinkGoogle Scholar
239. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A, Richieri SP, Dilly SG, et al; for the NEST 3 Committees and Investigators. Transcranial laser therapy in acute stroke treatment: results of Neurothera Effectiveness and Safety Trial 3, a phase III clinical end point device trial.Stroke. 2014; 45:3187–3193. doi: 10.1161/STROKEAHA.114.005795AbstractGoogle Scholar
240. Anderson CS, Arima H, Lavados P, Billot L, Hackett ML, Olavarría VV, Muñoz Venturelli P, Brunser A, Peng B, Cui L, et al; HeadPoST Investigators and Coordinators. Cluster-randomized, crossover trial of head positioning in acute stroke.N Engl J Med. 2017; 376:2437–2447. doi: 10.1056/NEJMoa1615715CrossrefMedlineGoogle Scholar
241. Alexandrov AW, Tsivgoulis G, Hill MD, Liebeskind DS, Schellinger P, Ovbiagele B, Arthur AS, Caso V, Nogueira RG, Hemphill JC, et al. HeadPoST: rightly positioned, or flat out wrong?Neurology. 2018; 90:885–889. doi: 10.1212/WNL.0000000000005481CrossrefMedlineGoogle Scholar
243. Stead LG, Gilmore RM, Vedula KC, Weaver AL, Decker WW, Brown RDImpact of acute blood pressure variability on ischemic stroke outcome.Neurology. 2006; 66:1878–1881. doi: 10.1212/01.wnl.0000219628.78513.b5CrossrefMedlineGoogle Scholar
244. Horn J, de Haan RJ, Vermeulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial.Stroke. 2001; 32:461–465. doi: 10.1161/01.str.32.2.461LinkGoogle Scholar
245. Schrader J, Lüders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhäupl K, Diener HC, Dominiak P; on behalf of the Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors.Stroke. 2003; 34:1699–1703. doi: 10.1161/01.STR.0000075777.18006.89LinkGoogle Scholar
246. Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, Jagger C. Controlling Hypertension and Hypotension Immediately Post-Stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial.Lancet Neurol. 2009; 8:48–56. doi: 10.1016/S1474-4422(08)70263-1CrossrefMedlineGoogle Scholar
247. Robinson TG, Potter JF, Ford GA, Bulpitt CJ, Chernova J, Jagger C, James MA, Knight J, Markus HS, Mistri AK, et al; COSSACS Investigators. Effects of antihypertensive treatment after acute stroke in the Continue or Stop Post-Stroke Antihypertensives Collaborative Study (COSSACS): a prospective, randomised, open, blinded-endpoint trial.Lancet Neurol. 2010; 9:767–775. doi: 10.1016/S1474-4422(10)70163-0CrossrefMedlineGoogle Scholar
248. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, Tong W, Liu C, Xu T, Ju Z, et al; CATIS Investigators. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial.JAMA. 2014; 311:479–489. doi: 10.1001/jama.2013.282543CrossrefMedlineGoogle Scholar
249. ENOS Trial Investigators, Bath PM, Woodhouse L, Scutt P, Krishnan K, Wardlaw JM, Bereczki D, Sprigg N, Berge E, Beridze M, Caso V, et al. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial.Lancet. 2015; 385:617–628.CrossrefMedlineGoogle Scholar
250. Kaste M, Fogelholm R, Erilä T, Palomäki H, Murros K, Rissanen A, Sarna S. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke.Stroke. 1994; 25:1348–1353. doi: 10.1161/01.str.25.7.1348LinkGoogle Scholar
251. Wahlgren NG, MacMahon DG, De Keyser J, Indredavik B, Ryman T. The Intravenous Nimodipine West European Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke.Cerebrovasc Dis. 1994; 4:204–210.CrossrefGoogle Scholar
252. Eveson DJ, Robinson TG, Potter JF. Lisinopril for the treatment of hypertension within the first 24 hours of acute ischemic stroke and follow-up.Am J Hypertens. 2007; 20:270–277. doi: 10.1016/j.amjhyper.2006.08.005CrossrefMedlineGoogle Scholar
253. Bath PM, Martin RH, Palesch Y, Cotton D, Yusuf S, Sacco R, Diener HC, Toni D, Estol C, Roberts R; for the PRoFESS Study Group. Effect of telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke: a PRoFESS subgroup analysis.Stroke. 2009; 40:3541–3546. doi: 10.1161/STROKEAHA.109.555623LinkGoogle Scholar
254. Sandset EC, Bath PM, Boysen G, Jatuzis D, Kõrv J, Lüders S, Murray GD, Richter PS, Roine RO, Terént A, et al; SCAST Study Group. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial.Lancet. 2011; 377:741–750. doi: 10.1016/S0140-6736(11)60104-9CrossrefMedlineGoogle Scholar
255. Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke.Cochrane Database Syst Rev. 2014:CD000039.MedlineGoogle Scholar
256. Oh MS, Yu KH, Hong KS, Kang DW, Park JM, Bae HJ, Koo J, Lee J, Lee BC; Valsartan Efficacy oN modesT blood pressUre REduction in acute ischemic stroke (VENTURE) study group. Modest blood pressure reduction with valsartan in acute ischemic stroke: a prospective, randomized, open-label, blinded-end-point trial.Int J Stroke. 2015; 10:745–751. doi: 10.1111/ijs.12446CrossrefMedlineGoogle Scholar
257. Lee M, Ovbiagele B, Hong KS, Wu YL, Lee JE, Rao NM, Feng W, Saver JL. Effect of blood pressure lowering in early ischemic stroke: meta-analysis.Stroke. 2015; 46:1883–1889. doi: 10.1161/STROKEAHA.115.009552LinkGoogle Scholar
258. Woodhouse L, Scutt P, Krishnan K, Berge E, Gommans J, Ntaios G, Wardlaw J, Sprigg N, Bath PM; on behalf of the ENOS Investigators. Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke: subgroup analysis of the Efficacy of Nitric Oxide in Stroke (ENOS) Trial.Stroke. 2015; 46:3194–3201. doi: 10.1161/STROKEAHA.115.009647LinkGoogle Scholar
259. Rai N, Prasad K, Bhatia R, Vibha D, Singh MB, Rai VK, Kumar A. Development and implementation of acute stroke care pathway in a tertiary care hospital in India: a cluster-randomized study.Neurol India. 2016; 64(suppl):S39–S45. doi: 10.4103/0028-3886.178038CrossrefMedlineGoogle Scholar
260. Middleton S, McElduff P, Ward J, Grimshaw JM, Dale S, D’Este C, Drury P, Griffiths R, Cheung NW, Quinn C, et al; QASC Trialists Group. Implementation of evidence-based treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): a cluster randomised controlled trial.Lancet. 2011; 378:1699–1706. doi: 10.1016/S0140-6736(11)61485-2CrossrefMedlineGoogle Scholar
261. Miles A, Zeng IS, McLauchlan H, Huckabee ML. Cough reflex testing in Dysphagia following stroke: a randomized controlled trial.J Clin Med Res. 2013; 5:222–233. doi: 10.4021/jocmr1340wMedlineGoogle Scholar
262. Joundi RA, Martino R, Saposnik G, Giannakeas V, Fang J, Kapral MK. Predictors and outcomes of dysphagia screening after acute ischemic stroke.Stroke. 2017; 48:900–906. doi: 10.1161/STROKEAHA.116.015332LinkGoogle Scholar
263. Sørensen RT, Rasmussen RS, Overgaard K, Lerche A, Johansen AM, Lindhardt T. Dysphagia screening and intensified oral hygiene reduce pneumonia after stroke.J Neurosci Nurs. 2013; 45:139–146. doi: 10.1097/JNN.0b013e31828a412cCrossrefMedlineGoogle Scholar
264. Brady M, Furlanetto D, Hunter RV, Lewis S, Milne V. Staff-led interventions for improving oral hygiene in patients following stroke.Cochrane Database Syst Rev. 2006:CD003864.MedlineGoogle Scholar
265. Wagner C, Marchina S, Deveau JA, Frayne C, Sulmonte K, Kumar S. Risk of stroke-associated pneumonia and oral hygiene.Cerebrovasc Dis. 2016; 41:35–39. doi: 10.1159/000440733CrossrefMedlineGoogle Scholar
266. Dennis M, Lewis S, Cranswick G, Forbes J; FOOD Trial Collaboration. FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke.Health Technol Assess. 2006; 10:iii–iv, ix.CrossrefMedlineGoogle Scholar
267. Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke.Cochrane Database Syst Rev. 2012; 10:CD000323. doi: 10.1002/14651858.CD000323.pub2MedlineGoogle Scholar
268. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G; CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial.Lancet. 2013; 382:516–524. doi: 10.1016/S0140-6736(13)61050-8CrossrefMedlineGoogle Scholar
269. Dennis M, Caso V, Kappelle LJ, Pavlovic A, Sandercock P; European Stroke Organisation. European Stroke Organisation (ESO) guidelines for prophylaxis for venous thromboembolism in immobile patients with acute ischaemic stroke.Eur Stroke J. 2016; 1:6–19. doi: 10.1177/2396987316628384CrossrefGoogle Scholar
270. Meader N, Moe-Byrne T, Llewellyn A, Mitchell AJ. Screening for poststroke major depression: a meta-analysis of diagnostic validity studies.J Neurol Neurosurg Psychiatry. 2014; 85:198–206. doi: 10.1136/jnnp-2012-304194CrossrefMedlineGoogle Scholar
271. Berg A, Lönnqvist J, Palomäki H, Kaste M. Assessment of depression after stroke: a comparison of different screening instruments.Stroke. 2009; 40:523–529. doi: 10.1161/STROKEAHA.108.527705LinkGoogle Scholar
272. Kang HJ, Stewart R, Kim JM, Jang JE, Kim SY, Bae KY, Kim SW, Shin IS, Park MS, Cho KH, et al. Comparative validity of depression assessment scales for screening poststroke depression.J Affect Disord. 2013; 147:186–191. doi: 10.1016/j.jad.2012.10.035CrossrefMedlineGoogle Scholar
273. Williams LS, Kroenke K, Bakas T, Plue LD, Brizendine E, Tu W, Hendrie H. Care management of poststroke depression: a randomized, controlled trial.Stroke. 2007; 38:998–1003. doi: 10.1161/01.STR.0000257319.14023.61LinkGoogle Scholar
274. Westendorp WF, Vermeij JD, Zock E, Hooijenga IJ, Kruyt ND, Bosboom HJ, Kwa VI, Weisfelt M, Remmers MJ, ten Houten R, et al; PASS investigators. The Preventive Antibiotics in Stroke Study (PASS): a pragmatic randomised open-label masked endpoint clinical trial.Lancet. 2015; 385:1519–1526. doi: 10.1016/S0140-6736(14)62456-9CrossrefMedlineGoogle Scholar
275. Kalra L, Irshad S, Hodsoll J, Simpson M, Gulliford M, Smithard D, Patel A, Rebollo-Mesa I; STROKE-INF Investigators. Prophylactic antibiotics after acute stroke for reducing pneumonia in patients with dysphagia (STROKE-INF): a prospective, cluster-randomised, open-label, masked endpoint, controlled clinical trial.Lancet. 2015; 386:1835–1844. doi: 10.1016/S0140-6736(15)00126-9CrossrefMedlineGoogle Scholar
276. Liu L, Xiong XY, Zhang Q, Fan XT, Yang QW. The efficacy of prophylactic antibiotics on post-stroke infections: an updated systematic review and meta-analysis.Sci Rep. 2016; 6:36656. doi: 10.1038/srep36656Google Scholar
277. Zheng F, Spreckelsen NV, Zhang X, Stavrinou P, Timmer M, Dohmen C, Goldbrunner R, Cao F, Zhang Q, Ran Q, et al. Should preventive antibiotics be used in patients with acute stroke? A systematic review and meta-analysis of randomized controlled trials.PLoS One. 2017; 12:e0186607. doi: 10.1371/journal.pone.0186607Google Scholar
278. Vermeij JD, Westendorp WF, Dippel DW, van de Beek D, Nederkoorn PJ. Antibiotic therapy for preventing infections in people with acute stroke.Cochrane Database Syst Rev. 2018; 1:CD008530. doi: 10.1002/14651858.CD008530.pub3MedlineGoogle Scholar
279. AVERT Trial Collaboration Group, Bernhardt J, Langhorne P, Lindley RI, Thrift AG, Ellery F, Collier J, Churilov L, Moodie M, Dewey H, Donnan G. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial.Lancet. 2015; 386:46–55.CrossrefMedlineGoogle Scholar
280. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W; DECIMAL, DESTINY, and HAMLET Investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials.Lancet Neurol. 2007; 6:215–222. doi: 10.1016/S1474-4422(07)70036-4CrossrefMedlineGoogle Scholar
281. Christensen MS, Paulson OB, Olesen J, Alexander SC, Skinhoj E, Dam WH, Lassen NA. Cerebral apoplexy (stroke) treated with or without prolonged artificial hyperventilation, 1: cerebral circulation, clinical course, and cause of death.Stroke. 1973; 4:568–631. doi: 10.1161/01.str.4.4.568AbstractGoogle Scholar
282. Ausina A, Báguena M, Nadal M, Manrique S, Ferrer A, Sahuquillo J, Garnacho A. Cerebral hemodynamic changes during sustained hypocapnia in severe head injury: can hyperventilation cause cerebral ischemia?Acta Neurochir Suppl. 1998; 71:1–4. doi: 10.1007/978-3-7091-6475-4_1MedlineGoogle Scholar
283. Steiner LA, Balestreri M, Johnston AJ, Czosnyka M, Coles JP, Chatfield DA, Smielewski P, Pickard JD, Menon DK. Sustained moderate reductions in arterial CO2 after brain trauma time-course of cerebral blood flow velocity and intracranial pressure.Intensive Care Med. 2004; 30:2180–2187. doi: 10.1007/s00134-004-2463-6Google Scholar
284. Carrera E, Steiner LA, Castellani G, Smielewski P, Zweifel C, Haubrich C, Pickard JD, Menon DK, Czosnyka M. Changes in cerebral compartmental compliances during mild hypocapnia in patients with traumatic brain injury.J Neurotrauma. 2011; 28:889–896. doi: 10.1089/neu.2010.1377Google Scholar
285. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial.J Neurosurg. 1991; 75:731–739. doi: 10.3171/jns.1991.75.5.0731CrossrefMedlineGoogle Scholar
286. Wan YH, Nie C, Wang HL, Huang CY. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: a meta-analysis.J Stroke Cerebrovasc Dis. 2014; 23:2736–2747. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.017CrossrefMedlineGoogle Scholar
287. Maciel CB, Sheth KN. Malignant MCA stroke: an update on surgical decompression and future directions.Curr Atheroscler Rep. 2015; 17:40. doi: 10.1007/s11883-015-0519-4CrossrefMedlineGoogle Scholar
288. Yang MH, Lin HY, Fu J, Roodrajeetsing G, Shi SL, Xiao SW. Decompressive hemicraniectomy in patients with malignant middle cerebral artery infarction: a systematic review and meta-analysis.Surgeon. 2015; 13:230–240. doi: 10.1016/j.surge.2014.12.002CrossrefMedlineGoogle Scholar
290. Alexander P, Heels-Ansdell D, Siemieniuk R, Bhatnagar N, Chang Y, Fei Y, Zhang Y, McLeod S, Prasad K, Guyatt G. Hemicraniectomy versus medical treatment with large MCA infarct: a review and meta-analysis.BMJ Open. 2016; 6:e014390. doi: 10.1136/bmjopen-2016-014390CrossrefMedlineGoogle Scholar
291. Sundseth J, Sundseth A, Jacobsen EA, Pripp AH, Sorteberg W, Altmann M, Lindegaard KF, Berg-Johnsen J, Thommessen B. Predictors of early in-hospital death after decompressive craniectomy in swollen middle cerebral artery infarction.Acta Neurochir (Wien). 2017; 159:301–306. doi: 10.1007/s00701-016-3049-0CrossrefMedlineGoogle Scholar
292. Suyama K, Horie N, Hayashi K, Nagata I. Nationwide survey of decompressive hemicraniectomy for malignant middle cerebral artery infarction in Japan.World Neurosurg. 2014; 82:1158–1163. doi: 10.1016/j.wneu.2014.07.015CrossrefMedlineGoogle Scholar
293. Yu JW, Choi JH, Kim DH, Cha JK, Huh JT. Outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 70 years old.J Cerebrovasc Endovasc Neurosurg. 2012; 14:65–74. doi: 10.7461/jcen.2012.14.2.65CrossrefMedlineGoogle Scholar
294. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, Gondan M, Schiller P, Limprecht R, Luntz S, et al; DESTINY II Investigators. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke.N Engl J Med. 2014; 370:1091–1100. doi: 10.1056/NEJMoa1311367CrossrefMedlineGoogle Scholar
295. Zhao J, Su YY, Zhang Y, Zhang YZ, Zhao R, Wang L, Gao R, Chen W, Gao D. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: a randomized controlled trial enrolling patients up to 80 years old.Neurocrit Care. 2012; 17:161–171. doi: 10.1007/s12028-012-9703-3CrossrefMedlineGoogle Scholar
296. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution’s experience.Neurosurgery. 2003; 53:1061–1065. doi: 10.1227/01.neu.0000088766.34559.3eCrossrefMedlineGoogle Scholar
297. Mostofi K. Neurosurgical management of massive cerebellar infarct outcome in 53 patients.Surg Neurol Int. 2013; 4:28. doi: 10.4103/2152-7806.107906CrossrefMedlineGoogle Scholar
298. Heidenreich JO, Hsu D, Wang G, Jesberger JA, Tarr RW, Zaidat OO, Sunshine JL. Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care.Acta Radiol. 2008; 49:550–557. doi: 10.1080/02841850801958320CrossrefMedlineGoogle Scholar
299. North American Symptomatic Carotid Endarterectomy Trial Collaborators, Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ, Ferguson GG, Fox AJ, Rankin RN, Hachinski VC, Wiebers DO, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis.N Engl J Med. 1991; 325:445–453. doi: 10.1056/NEJM199108153250701CrossrefMedlineGoogle Scholar
300. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST).Lancet. 1998; 351:1379–1387.CrossrefMedlineGoogle Scholar
301. Amarenco P, Bogousslavsky J, Callahan A, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, et al; Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. High-dose atorvastatin after stroke or transient ischemic attack.N Engl J Med. 2006; 355:549–559. doi: 10.1056/NEJMoa061894CrossrefMedlineGoogle Scholar
302. Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Lowenthal A. European Stroke Prevention Study, 2: dipyridamole and acetylsalicylic acid in the secondary prevention of stroke.J Neurol Sci. 1996; 143:1–13. doi: 10.1016/s0022-510x(96)00308-5CrossrefMedlineGoogle Scholar
303. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE): CAPRIE Steering Committee.Lancet. 1996; 348:1329–1339. doi: 10.1016/s0140-6736(96)09457-3CrossrefMedlineGoogle Scholar
304. Sacco RL, Diener HC, Yusuf S, Cotton D, Ounpuu S, Lawton WA, Palesch Y, Martin RH, Albers GW, Bath P, et al; PRoFESS Study Group. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke.N Engl J Med. 2008; 359:1238–1251. doi: 10.1056/NEJMoa0805002CrossrefMedlineGoogle Scholar
305. SALT Collaborative Group. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischaemic events.Lancet. 1991; 338:1345–1349.CrossrefMedlineGoogle Scholar
306. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack.Lancet. 2001; 358:1033–1041. doi: 10.1016/S0140-6736(01)06178-5CrossrefMedlineGoogle Scholar
307. Burke JF, Gelb DJ, Quint DJ, Morgenstern LB, Kerber KA. The impact of MRI on stroke management and outcomes: a systematic review.J Eval Clin Pract. 2013; 19:987–993. doi: 10.1111/jep.12011Google Scholar
308. Wardlaw J, Brazzelli M, Miranda H, Chappell F, McNamee P, Scotland G, Quayyum Z, Martin D, Shuler K, Sandercock P, et al. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation.Health Technol Assess. 2014; 18:1–368, v–vi. doi: 10.3310/hta18270CrossrefMedlineGoogle Scholar
309. Ertl-Wagner B, Brandt T, Seifart C, Forsting M. Diagnostic and therapeutic consequences of repeat brain imaging and follow-up vascular imaging in stroke patients.AJNR Am J Neuroradiol. 1999; 20:37–42.Google Scholar
310. Schneider LB, Libman RB, Kanner R. Utility of repeat brain imaging in stroke.AJNR Am J Neuroradiol. 1996; 17:1259–1263.Google Scholar
311. Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, Settergren M, Sjöstrand C, Roine RO, Hildick-Smith D, et al; Gore REDUCE Clinical Study Investigators. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke.N Engl J Med. 2017; 377:1033–1042. doi: 10.1056/NEJMoa1707404CrossrefMedlineGoogle Scholar
312. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, Arquizan C, Béjot Y, Vuillier F, Detante O, et al; CLOSE Investigators. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke.N Engl J Med. 2017; 377:1011–1021. doi: 10.1056/NEJMoa1705915CrossrefMedlineGoogle Scholar
313. Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke.N Engl J Med. 2013; 368:1092–1100. doi: 10.1056/NEJMoa1301440CrossrefMedlineGoogle Scholar
314. Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke.N Engl J Med. 2017; 377:1022–1032. doi: 10.1056/NEJMoa1610057CrossrefMedlineGoogle Scholar
315. Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, Andersen G, Ibrahim R, Schuler G, Walton AS, et al; PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptogenic embolism.N Engl J Med. 2013; 368:1083–1091. doi: 10.1056/NEJMoa1211716CrossrefMedlineGoogle Scholar
316. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, Felberg R, Herrmann H, Kar S, Landzberg M, et al; CLOSURE I Investigators. Closure or medical therapy for cryptogenic stroke with patent foramen ovale.N Engl J Med. 2012; 366:991–999. doi: 10.1056/NEJMoa1009639CrossrefMedlineGoogle Scholar
317. Lee PH, Song JK, Kim JS, Heo R, Lee S, Kim DH, Song JM, Kang DH, Kwon SU, Kang DW, et al. cryptogenic stroke and high-risk patent foramen ovale: the DEFENSE-PFO Trial.J Am Coll Cardiol. 2018; 71:2335–2342. doi: 10.1016/j.jacc.2018.02.046CrossrefMedlineGoogle Scholar
318. Turc G, Calvet D, Guerin P, Sroussi M, Chatellier G, Mas JL, CLOSE Investigators. Closure, anticoagulation, or antiplatelet therapy for cryptogenic stroke with patent foramen ovale: systematic review of randomized trials, sequential meta-analysis, and new insights from the CLOSE Study.J Am Heart Assoc. 2018;7:e008356. doi: 10.1161/JAHA.117.008356Google Scholar
319. Mir H, Siemieniuk RAC, Ge L, Foroutan F, Fralick M, Syed T, Lopes LC, Kuijpers T, Mas JL, Vandvik PO, et al. Patent foramen ovale closure, antiplatelet therapy or anticoagulation in patients with patent foramen ovale and cryptogenic stroke: a systematic review and network meta-analysis incorporating complementary external evidence.BMJ Open. 2018; 8:e023761. doi: 10.1136/bmjopen-2018-023761Google Scholar
320. Qiu B, Cai Y, Wang D, Lin J, Fan Y. Closure versus medical therapy for patent foramen ovale in patients with cryptogenic stroke: an updated meta-analysis of randomized controlled trials.J Stroke Cerebrovasc Dis. 2018; 27:3463–3472. doi: 10.1016/j.jstrokecerebrovasdis.2018.08.008Google Scholar
321. Giacoppo D, Caronna N, Frangieh AH, Michel J, Andò G, Tarantini G, Kasel AM, Capodanno D, Byrne RA. Long-term effectiveness and safety of transcatheter closure of patent foramen ovale compared with antithrombotic therapy alone: a meta-analysis of six randomised clinical trials and 3,560 patients with reconstructed time-to-event data.EuroIntervention. 2018; 14:857–867. doi: 10.4244/EIJ-D-18-00341Google Scholar
322. Niu X, Ou-Yang G, Yan PF, Huang SL, Zhang ZT, Zhang ZH. Closure of patent foramen ovale for cryptogenic stroke patients: an updated systematic review and meta-analysis of randomized trials.J Neurol. 2018; 265:1259–1268. doi: 10.1007/s00415-018-8766-2Google Scholar
323. Li J, Liu J, Liu M, Zhang S, Hao Z, Zhang J, Zhang C. Closure versus medical therapy for preventing recurrent stroke in patients with patent foramen ovale and a history of cryptogenic stroke or transient ischemic attack.Cochrane Database Syst Rev. 2015:CD009938.Google Scholar
324. McIntyre WF, Spence J, Belley-Cote EP. Assessing the quality of evidence supporting patent foramen ovale closure over medical therapy after cryptogenic stroke.Eur Heart J. 2018; 39:3618–3619. doi: 10.1093/eurheartj/ehy496CrossrefMedlineGoogle Scholar
325. Ois A, Cuadrado-Godia E, Rodríguez-Campello A, Jimenez-Conde J, Roquer J. High risk of early neurological recurrence in symptomatic carotid stenosis.Stroke. 2009; 40:2727–2731. doi: 10.1161/STROKEAHA.109.548032LinkGoogle Scholar
326. De Rango P, Brown MM, Chaturvedi S, Howard VJ, Jovin T, Mazya MV, Paciaroni M, Manzone A, Farchioni L, Caso V. Summary of evidence on early carotid intervention for recently symptomatic stenosis based on meta-analysis of current risks.Stroke. 2015; 46:3423–3436. doi: 10.1161/STROKEAHA.115.010764LinkGoogle Scholar
327. Marnane M, Ni Chroinin D, Callaly E, Sheehan OC, Merwick A, Hannon N, Horgan G, Kyne L, Moroney J, McCormack PM, et al. Stroke recurrence within the time window recommended for carotid endarterectomy.Neurology. 2011; 77:738–743. doi: 10.1212/WNL.0b013e31822b00cfCrossrefMedlineGoogle Scholar
328. Johansson EP, Arnerlöv C, Wester P. Risk of recurrent stroke before carotid endarterectomy: the ANSYSCAP study.Int J Stroke. 2013; 8:220–227. doi: 10.1111/j.1747-4949.2012.00790.xCrossrefMedlineGoogle Scholar
329. Strömberg S, Nordanstig A, Bentzel T, Österberg K, Bergström GM. Risk of early recurrent stroke in symptomatic carotid stenosis.Eur J Vasc Endovasc Surg. 2015; 49:137–144. doi: 10.1016/j.ejvs.2014.11.004CrossrefMedlineGoogle Scholar
330. Kazandjian C, Kretz B, Lemogne B, Aboa Eboulé C, Béjot Y, Steinmetz E. Influence of the type of cerebral infarct and timing of intervention in the early outcomes after carotid endarterectomy for symptomatic stenosis.J Vasc Surg. 2016; 63:1256–1261. doi: 10.1016/j.jvs.2015.10.097Google Scholar
331. Azzini C, Gentile M, De Vito A, Traina L, Sette E, Fainardi E, Mascoli F, Casetta I. Very early carotid endarterectomy after intravenous thrombolysis.Eur J Vasc Endovasc Surg. 2016; 51:482–486. doi: 10.1016/j.ejvs.2015.11.006Google Scholar
332. Adachi K, Sadato A, Hayakawa M, Maeda S, Hirose Y. Acute carotid artery stenting in symptomatic high-grade cervical carotid artery stenosis.Neurosurg Rev. 2017; 40:45–51. doi: 10.1007/s10143-016-0737-4Google Scholar
333. Vasconcelos V, Cassola N, da Silva EM, Baptista-Silva JC. Immediate versus delayed treatment for recently symptomatic carotid artery stenosis.Cochrane Database Syst Rev. 2016; 9:CD011401. doi: 10.1002/14651858.CD011401.pub2Google Scholar
334. Ferguson GG, Eliasziw M, Barr HW, Clagett GP, Barnes RW, Wallace MC, Taylor DW, Haynes RB, Finan JW, Hachinski VC, et al. The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients.Stroke. 1999; 30:1751–1758. doi: 10.1161/01.str.30.9.1751LinkGoogle Scholar
335. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, Levine SR, Chaturvedi S, Kasner SE, Benesch CG, et al; Warfarin-Aspirin Symptomatic Intracranial Disease Trial Investigators. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis.N Engl J Med. 2005; 352:1305–1316. doi: 10.1056/NEJMoa043033CrossrefMedlineGoogle Scholar
336. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, Janis LS, Lutsep HL, Barnwell SL, Waters MF, et al; SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis.N Engl J Med. 2011; 365:993–1003. doi: 10.1056/NEJMoa1105335CrossrefMedlineGoogle Scholar
337. Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, et al; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial.Lancet. 2014; 383:333–341. doi: 10.1016/S0140-6736(13)62038-3CrossrefMedlineGoogle Scholar
338. Lutsep HL, Barnwell SL, Larsen DT, Lynn MJ, Hong M, Turan TN, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Investigators. Outcome in patients previously on antithrombotic therapy in the SAMMPRIS trial: subgroup analysis.Stroke. 2015; 46:775–779. doi: 10.1161/STROKEAHA.114.007752LinkGoogle Scholar
339. Chaturvedi S, Turan TN, Lynn MJ, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Trial Investigators. Do patient characteristics explain the differences in outcome between medically treated patients in SAMMPRIS and WASID?Stroke. 2015; 46:2562–2567. doi: 10.1161/STROKEAHA.115.009656LinkGoogle Scholar
340. Kallmünzer B, Breuer L, Kahl N, Bobinger T, Raaz-Schrauder D, Huttner HB, Schwab S, Köhrmann M. Serious cardiac arrhythmias after stroke: incidence, time course, and predictors: a systematic, prospective analysis.Stroke. 2012; 43:2892–2897. doi: 10.1161/STROKEAHA.112.664318AbstractGoogle Scholar
341. Fernández-Menéndez S, García-Santiago R, Vega-Primo A, González Nafría N, Lara-Lezama LB, Redondo-Robles L, Montes-Montes M, Riveira-Rodríguez MC, Tejada-García J. Cardiac arrhythmias in stroke unit patients: evaluation of the cardiac monitoring data.Neurologia. 2016; 31:289–295. doi: 10.1016/j.nrl.2015.03.013Google Scholar
342. EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke.Lancet. 1993; 342:1255–1262.CrossrefMedlineGoogle Scholar
343. Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis.Lancet Neurol. 2015; 14:377–387. doi: 10.1016/S1474-4422(15)70027-XCrossrefMedlineGoogle Scholar
344. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F, et al; CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation.N Engl J Med. 2014; 370:2478–2486. doi: 10.1056/NEJMoa1313600CrossrefMedlineGoogle Scholar
345. Brachmann J, Morillo CA, Sanna T, Di Lazzaro V, Diener HC, Bernstein RA, Rymer M, Ziegler PD, Liu S, Passman RS. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the Cryptogenic Stroke and Underlying Atrial Fibrillation Trial.Circ Arrhythm Electrophysiol. 2016; 9:e003333. doi: 10.1161/CIRCEP.115.003333LinkGoogle Scholar
346. Wachter R, Gröschel K, Gelbrich G, Hamann GF, Kermer P, Liman J, Seegers J, Wasser K, Schulte A, Jürries F, et al; Find-AFRANDOMISED Investigators and Coordinators. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AFrandomised): an open-label randomised controlled trial.Lancet Neurol. 2017; 16:282–290. doi: 10.1016/S1474-4422(17)30002-9CrossrefMedlineGoogle Scholar
347. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY, Ip J, Holcomb R, Akar JG, Halperin JL; IMPACT Investigators. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices.Eur Heart J. 2015; 36:1660–1668. doi: 10.1093/eurheartj/ehv115CrossrefMedlineGoogle Scholar
348. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, Vaid H, O’Donnell M, Laupacis A, Côté R, et al; EMBRACE Investigators and Coordinators. Atrial fibrillation in patients with cryptogenic stroke.N Engl J Med. 2014; 370:2467–2477. doi: 10.1056/NEJMoa1311376CrossrefMedlineGoogle Scholar
349. Higgins P, Dawson J, MacFarlane PW, McArthur K, Langhorne P, Lees KR. Predictive value of newly detected atrial fibrillation paroxysms in patients with acute ischemic stroke, for atrial fibrillation after 90 days.Stroke. 2014; 45:2134–2136. doi: 10.1161/STROKEAHA.114.005405LinkGoogle Scholar
350. Bath PM, Woodhouse LJ, Appleton JP, Beridze M, Christensen H, Dineen RA, Duley L, England TJ, Flaherty K, Havard D, et al; TARDIS Investigators. Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial.Lancet. 2018; 391:850–859. doi: 10.1016/S0140-6736(17)32849-0CrossrefMedlineGoogle Scholar
351. Meenan RT, Saha S, Chou R, Swarztrauber K, Krages KP, O’Keefee-Rosetti M, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Effectiveness and cost-effectiveness of echocardiography and carotid imaging in the management of stroke.Evid Rep Technol Assess (Summ). 2002:1–10.Google Scholar
352. Menon BK, Coulter JI, Bal S, Godzwon C, Weeks S, Hutchison S, Hill MD, Coutts SB. Acute ischaemic stroke or transient ischaemic attack and the need for inpatient echocardiography.Postgrad Med J. 2014; 90:434–438. doi: 10.1136/postgradmedj-2013-132220Google Scholar
353. Holmes M, Rathbone J, Littlewood C, Rawdin A, Stevenson M, Stevens J, Archer R, Evans P, Wang J. Routine echocardiography in the management of stroke and transient ischaemic attack: a systematic review and economic evaluation.Health Technol Assess. 2014; 18:1–176. doi: 10.3310/hta18160Google Scholar
354. McGrath ER, Paikin JS, Motlagh B, Salehian O, Kapral MK, O’Donnell MJ. Transesophageal echocardiography in patients with cryptogenic ischemic stroke: a systematic review.Am Heart J. 2014; 168:706–712. doi: 10.1016/j.ahj.2014.07.025CrossrefMedlineGoogle Scholar
355. Zhang L, Harrison JK, Goldstein LB. Echocardiography for the detection of cardiac sources of embolism in patients with stroke or transient ischemic attack.J Stroke Cerebrovasc Dis. 2012; 21:577–582. doi: 10.1016/j.jstrokecerebrovasdis.2011.01.005Google Scholar
356. Schaer B, Sticherling C, Lyrer P, Osswald S. Cardiological diagnostic work-up in stroke patients: a comprehensive study of test results and therapeutic implications.Eur J Neurol. 2009; 16:268–273. doi: 10.1111/j.1468-1331.2008.02413.xCrossrefMedlineGoogle Scholar
357. Douen A, Pageau N, Medic S. Usefulness of cardiovascular investigations in stroke management: clinical relevance and economic implications.Stroke. 2007; 38:1956–1958. doi: 10.1161/STROKEAHA.106.477760AbstractGoogle Scholar
358. Wolber T, Maeder M, Atefy R, Bluzaite I, Blank R, Rickli H, Ammann P. Should routine echocardiography be performed in all patients with stroke?J Stroke Cerebrovasc Dis. 2007; 16:1–7. doi: 10.1016/j.jstrokecerebrovasdis.2006.07.002CrossrefMedlineGoogle Scholar
359. Homma S, Thompson JL, Pullicino PM, Levin B, Freudenberger RS, Teerlink JR, Ammon SE, Graham S, Sacco RL, Mann DL, et al; WARCEF Investigators. Warfarin and aspirin in patients with heart failure and sinus rhythm.N Engl J Med. 2012; 366:1859–1869. doi: 10.1056/NEJMoa1202299CrossrefMedlineGoogle Scholar
360. Massie BM, Collins JF, Ammon SE, Armstrong PW, Cleland JG, Ezekowitz M, Jafri SM, Krol WF, O’Connor CM, Schulman KA, et al; for the WATCH Trial Investigators. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial.Circulation. 2009; 119:1616–1624. doi: 10.1161/CIRCULATIONAHA.108.801753LinkGoogle Scholar
361. Ahmad O, Ahmad KE, Dear KB, Harvey I, Hughes A, Lueck CJ. Echocardiography in the detection of cardioembolism in a stroke population.J Clin Neurosci. 2010; 17:561–565. doi: 10.1016/j.jocn.2009.09.016Google Scholar
362. Secades S, Martín M, Corros C, Rodríguez ML, García-Campos A, de la Hera Galarza JM, Lambert JL. Diagnostic yield of echocardiography in stroke: should we improve patient selection?Neurologia. 2013; 28:15–18. doi: 10.1016/j.nrl.2012.03.002Google Scholar
363. Kapral MK, Silver FL. Preventive health care, 1999 update, 2: echocardiography for the detection of a cardiac source of embolus in patients with stroke: Canadian Task Force on Preventive Health Care.CMAJ. 1999; 161:989–996.MedlineGoogle Scholar
364. Connors JM. Thrombophilia testing and venous thrombosis.N Engl J Med. 2017; 377:1177–1187. doi: 10.1056/NEJMra1700365CrossrefMedlineGoogle Scholar
365. Morris JG, Singh S, Fisher M. Testing for inherited thrombophilias in arterial stroke: can it cause more harm than good?Stroke. 2010; 41:2985–2990. doi: 10.1161/STROKEAHA.110.595199LinkGoogle Scholar
366. Brown DL, Chervin RD, Hickenbottom SL, Langa KM, Morgenstern LB. Screening for obstructive sleep apnea in stroke patients: a cost-effectiveness analysis.Stroke. 2005; 36:1291–1293. doi: 10.1161/01.STR.0000166055.52742.2bLinkGoogle Scholar
367. Pack AI, Pien GW. Update on sleep and its disorders.Annu Rev Med. 2011; 62:447–460. doi: 10.1146/annurev-med-050409-104056Google Scholar
368. Medeiros CA, de Bruin VM, Andrade GM, Coutinho WM, de Castro-Silva C, de Bruin PF. Obstructive sleep apnea and biomarkers of inflammation in ischemic stroke.Acta Neurol Scand. 2012; 126:17–22. doi: 10.1111/j.1600-0404.2011.01589.xCrossrefMedlineGoogle Scholar
369. Camilo MR, Sander HH, Eckeli AL, Fernandes RM, Dos Santos-Pontelli TE, Leite JP, Pontes-Neto OM. SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea.Sleep Med. 2014; 15:1021–1024. doi: 10.1016/j.sleep.2014.03.026CrossrefMedlineGoogle Scholar
370. Stahl SM, Yaggi HK, Taylor S, Qin L, Ivan CS, Austin C, Ferguson J, Radulescu R, Tobias L, Sico J, et al. Infarct location and sleep apnea: evaluating the potential association in acute ischemic stroke.Sleep Med. 2015; 16:1198–1203. doi: 10.1016/j.sleep.2015.07.003CrossrefMedlineGoogle Scholar
371. Parra O, Sánchez-Armengol A, Bonnin M, Arboix A, Campos-Rodríguez F, Pérez-Ronchel J, Durán-Cantolla J, de la Torre G, González Marcos JR, de la Peña M, et al. Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial.Eur Respir J. 2011; 37:1128–1136. doi: 10.1183/09031936.00034410CrossrefMedlineGoogle Scholar
372. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, et al; SAVE Investigators and Coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea.N Engl J Med. 2016; 375:919–931. doi: 10.1056/NEJMoa1606599CrossrefMedlineGoogle Scholar
373. Côté R, Zhang Y, Hart RG, McClure LA, Anderson DC, Talbert RL, Benavente OR. ASA failure: does the combination ASA/clopidogrel confer better long-term vascular protection?Neurology. 2014; 82:382–389. doi: 10.1212/WNL.0000000000000076CrossrefMedlineGoogle Scholar
374. Lee M, Saver JL, Hong KS, Rao NM, Wu YL, Ovbiagele B. Antiplatelet regimen for patients with breakthrough strokes while on aspirin: a systematic review and meta-analysis.Stroke. 2017; 48:2610–2613. doi: 10.1161/STROKEAHA.117.017895LinkGoogle Scholar
375. John S, Katzan I. Recurrent stroke while on antiplatelet therapy.Neurol Clin. 2015; 33:475–489. doi: 10.1016/j.ncl.2014.12.007Google Scholar
376. Turan TN, Maidan L, Cotsonis G, Lynn MJ, Romano JG, Levine SR, Chimowitz MI; for the Warfarin-Aspirin Symptomatic Intracranial Disease Investigators. Failure of antithrombotic therapy and risk of stroke in patients with symptomatic intracranial stenosis.Stroke. 2009; 40:505–509. doi: 10.1161/STROKEAHA.108.528281LinkGoogle Scholar
377. Kasner SE, Lynn MJ, Chimowitz MI, Frankel MR, Howlett-Smith H, Hertzberg VS, Chaturvedi S, Levine SR, Stern BJ, Benesch CG, et al; Warfarin Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators. Warfarin vs aspirin for symptomatic intracranial stenosis: subgroup analyses from WASID.Neurology. 2006; 67:1275–1278. doi: 10.1212/01.wnl.0000238506.76873.2fCrossrefMedlineGoogle Scholar
378. Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, Marcheselli S, Rueckert C, Pezzini A, Poli L, Padovani A, et al. Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF Study.Stroke. 2015; 46:2175–2182. doi: 10.1161/STROKEAHA.115.008891LinkGoogle Scholar
379. Markus HS, Hayter E, Levi C, Feldman A, Venables G, Norris J; CADISS Trial Investigators. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial.Lancet Neurol. 2015; 14:361–367. doi: 10.1016/S1474-4422(15)70018-9CrossrefMedlineGoogle Scholar
380. Larsson SC, King A, Madigan J, Levi C, Norris JW, Markus HS. Prognosis of carotid dissecting aneurysms: results from CADISS and a systematic review.Neurology. 2017; 88:646–652. doi: 10.1212/WNL.0000000000003617CrossrefMedlineGoogle Scholar
381. Ahlhelm F, Benz RM, Ulmer S, Lyrer P, Stippich C, Engelter S. Endovascular treatment of cervical artery dissection: ten case reports and review of the literature.Interv Neurol. 2013; 1:143–150. doi: 10.1159/000351687CrossrefMedlineGoogle Scholar
382. Kim JT, Heo SH, Park MS, Chang J, Choi KH, Cho KH. Use of antithrombotics after hemorrhagic transformation in acute ischemic stroke.PLoS One. 2014; 9:e89798. doi: 10.1371/journal.pone.0089798CrossrefMedlineGoogle Scholar
383. England TJ, Bath PM, Sare GM, Geeganage C, Moulin T, O’Neill D, Woimant F, Christensen H, De Deyn P, Leys D, et al; TAIST Investigators. Asymptomatic hemorrhagic transformation of infarction and its relationship with functional outcome and stroke subtype: assessment from the Tinzaparin in Acute Ischaemic Stroke Trial.Stroke. 2010; 41:2834–2839. doi: 10.1161/STROKEAHA.109.573063LinkGoogle Scholar
384. Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ, Sattar N, Preiss D, Bruckert E, Ceška R, Lepor N, et al; GAUSS-3 Investigators. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial.JAMA. 2016; 315:1580–1590. doi: 10.1001/jama.2016.3608CrossrefMedlineGoogle Scholar
385. Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, Bruckert E, Jacobson TA, Kopecky SL, Baccara-Dinet MT, et al; ODYSSEY ALTERNATIVE Investigators. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial.J Clin Lipidol. 2015; 9:758–769. doi: 10.1016/j.jacl.2015.08.006CrossrefMedlineGoogle Scholar
386. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, DePalma SM, Minissian MB, Orringer CE, Smith SC2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents.J Am Coll Cardiol. 2016; 68:92–125. doi: 10.1016/j.jacc.2016.03.519CrossrefMedlineGoogle Scholar
387. Sanossian N, Saver JL, Liebeskind DS, Kim D, Razinia T, Ovbiagele B. Achieving target cholesterol goals after stroke: is in-hospital statin initiation the key?Arch Neurol. 2006; 63:1081–1083. doi: 10.1001/archneur.63.8.1081CrossrefMedlineGoogle Scholar
388. Hong KS, Lee JS. Statins in acute ischemic stroke: a systematic review.J Stroke. 2015; 17:282–301. doi: 10.5853/jos.2015.17.3.282CrossrefMedlineGoogle Scholar
389. Kennedy J, Hill MD, Ryckborst KJ, Eliasziw M, Demchuk AM, Buchan AM; FASTER Investigators. Fast Assessment of Stroke and Transient Ischaemic Attack to Prevent Early Recurrence (FASTER): a randomised controlled pilot trial.Lancet Neurol. 2007; 6:961–969. doi: 10.1016/S1474-4422(07)70250-8CrossrefMedlineGoogle Scholar
390. Yoshimura S, Uchida K, Daimon T, Takashima R, Kimura K, Morimoto T; on behalf of the ASSORT Trial Investigator. Randomized controlled trial of early versus delayed statin therapy in patients with acute ischemic stroke: ASSORT Trial (Administration of Statin on Acute Ischemic Stroke Patient).Stroke. 2017; 48:3057–3063. doi: 10.1161/STROKEAHA.117.017623LinkGoogle Scholar
392. Lee MJ, Park E, Kim HC, Lee HS, Cha MJ, Kim YD, Heo JH, Nam HS. Timely interventions can increase smoking cessation rate in men with ischemic stroke.J Korean Acad Nurs. 2016; 46:610–617. doi: 10.4040/jkan.2016.46.4.610Google Scholar
393. Eisenberg MJ, Windle SB, Roy N, Old W, Grondin FR, Bata I, Iskander A, Lauzon C, Srivastava N, Clarke A, et al; EVITA Investigators. Varenicline for smoking cessation in hospitalized patients with acute coronary syndrome.Circulation. 2016; 133:21–30. doi: 10.1161/CIRCULATIONAHA.115.019634LinkGoogle Scholar
394. Schwartz J, Dreyer RP, Murugiah K, Ranasinghe I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States.Prehosp Emerg Care. 2016; 20:560–565. doi: 10.3109/10903127.2016.1139219CrossrefMedlineGoogle Scholar
395. Boden-Albala B, Stillman J, Roberts ET, Quarles LW, Glymour MM, Chong J, Moats H, Torrico V, Parides MC. Comparison of acute stroke preparedness strategies to decrease emergency department arrival time in a multiethnic cohort: the Stroke Warning Information and Faster Treatment Study.Stroke. 2015; 46:1806–1812. doi: 10.1161/STROKEAHA.114.008502LinkGoogle Scholar
396. Morgenstern LB, Gonzales NR, Maddox KE, Brown DL, Karim AP, Espinosa N, Moyé LA, Pary JK, Grotta JC, Lisabeth LD, et al. A randomized, controlled trial to teach middle school children to recognize stroke and call 911: the Kids Identifying and Defeating Stroke project.Stroke. 2007; 38:2972–2978. doi: 10.1161/STROKEAHA.107.490078LinkGoogle Scholar
397. Kidwell CS, Starkman S, Eckstein M, Weems K, Saver JL. Identifying stroke in the field: prospective validation of the Los Angeles Prehospital Stroke Screen (LAPSS).Stroke. 2000; 31:71–76. doi: 10.1161/01.str.31.1.71LinkGoogle Scholar
398. Bray JE, Martin J, Cooper G, Barger B, Bernard S, Bladin C. Paramedic identification of stroke: community validation of the Melbourne Ambulance Stroke Screen.Cerebrovasc Dis. 2005; 20:28–33. doi: 10.1159/000086201CrossrefMedlineGoogle Scholar
399. Studnek JR, Asimos A, Dodds J, Swanson D. Assessing the validity of the Cincinnati Prehospital Stroke Scale and the Medic Prehospital Assessment for Code Stroke in an urban emergency medical services agency.Prehosp Emerg Care. 2013; 17:348–353. doi: 10.3109/10903127.2013.773113CrossrefMedlineGoogle Scholar
400. Chenkin J, Gladstone DJ, Verbeek PR, Lindsay P, Fang J, Black SE, Morrison L. Predictive value of the Ontario prehospital stroke screening tool for the identification of patients with acute stroke.Prehosp Emerg Care. 2009; 13:153–159. doi: 10.1080/10903120802706146CrossrefMedlineGoogle Scholar
401. Asimos AW, Ward S, Brice JH, Rosamond WD, Goldstein LB, Studnek J. Out-of-hospital stroke screen accuracy in a state with an emergency medical services protocol for routing patients to acute stroke centers.Ann Emerg Med. 2014; 64:509–515. doi: 10.1016/j.annemergmed.2014.03.024CrossrefMedlineGoogle Scholar
402. Pickham D, Valdez A, Demeestere J, Lemmens R, Diaz L, Hopper S, de la Cuesta K, Rackover F, Miller K, Lansberg MG. Prognostic value of BEFAST vs. FAST to identify stroke in a prehospital setting.Prehosp Emerg Care. 2019; 23:195–200. doi: 10.1080/10903127.2018.1490837CrossrefMedlineGoogle Scholar
403. van Wijngaarden JD, Dirks M, Niessen LW, Huijsman R, Dippel DW. Do centres with well-developed protocols, training and infrastructure have higher rates of thrombolysis for acute ischaemic stroke?QJM. 2011; 104:785–791. doi: 10.1093/qjmed/hcr075CrossrefMedlineGoogle Scholar
404. Jeng JS, Tang SC, Deng IC, Tsai LK, Yeh SJ, Yip PK. Stroke center characteristics which influence the administration of thrombolytic therapy for acute ischemic stroke: a national survey of stroke centers in Taiwan.J Neurol Sci. 2009; 281:24–27. doi: 10.1016/j.jns.2009.03.004CrossrefMedlineGoogle Scholar
405. Douglas VC, Tong DC, Gillum LA, Zhao S, Brass LM, Dostal J, Johnston SC. Do the Brain Attack Coalition’s criteria for stroke centers improve care for ischemic stroke?Neurology. 2005; 64:422–427. doi: 10.1212/01.WNL.0000150903.38639.E1CrossrefMedlineGoogle Scholar
406. Asimos AW, Norton HJ, Price MF, Cheek WM. Therapeutic yield and outcomes of a community teaching hospital code stroke protocol.Acad Emerg Med. 2004; 11:361–370. doi: 10.1197/j.aem.2003.12.016CrossrefMedlineGoogle Scholar
407. Sauser K, Levine DA, Nickles AV, Reeves MJ. Hospital variation in thrombolysis times among patients with acute ischemic stroke: the contributions of door-to-imaging time and imaging-to-needle time.JAMA Neurol. 2014; 71:1155–1161. doi: 10.1001/jamaneurol.2014.1528CrossrefMedlineGoogle Scholar
408. Demaerschalk BM, Bobrow BJ, Raman R, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Ward MP, Richemont PC, Brazdys K, et al; for the STRokE DOC AZ TIME Investigators. Stroke team remote evaluation using a digital observation camera in Arizona: the initial Mayo Clinic experience trial.Stroke. 2010; 41:1251–1258. doi: 10.1161/STROKEAHA.109.574509LinkGoogle Scholar
409. Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD. Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study.Lancet Neurol. 2008; 7:787–795. doi: 10.1016/S1474-4422(08)70171-6CrossrefMedlineGoogle Scholar
410. Rai AT, Smith MS, Boo S, Tarabishy AR, Hobbs GR, Carpenter JS. The “pit-crew” model for improving door-to-needle times in endovascular stroke therapy: a Six-Sigma project.J Neurointerv Surg. 2016; 8:447–452. doi: 10.1136/neurintsurg-2015-012219CrossrefMedlineGoogle Scholar
411. Muir KW, Ford GA, Messow CM, Ford I, Murray A, Clifton A, Brown MM, Madigan J, Lenthall R, Robertson F, et al; PISTE Investigators. Endovascular therapy for acute ischaemic stroke: the Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial.J Neurol Neurosurg Psychiatry. 2017; 88:38–44. doi: 10.1136/jnnp-2016-314117CrossrefMedlineGoogle Scholar
413. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, Jauch EC, Jovin TG, Yan B, Silver FL, et al; Interventional Management of Stroke (IMS) III Investigators. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke.N Engl J Med. 2013; 368:893–903. doi: 10.1056/NEJMoa1214300CrossrefMedlineGoogle Scholar
414. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, Boccardi E; SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke.N Engl J Med. 2013; 368:904–913. doi: 10.1056/NEJMoa1213701CrossrefMedlineGoogle Scholar
415. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, Feng L, Meyer BC, Olson S, Schwamm LH, et al; MR RESCUE Investigators. A trial of imaging selection and endovascular treatment for ischemic stroke.N Engl J Med. 2013; 368:914–923. doi: 10.1056/NEJMoa1212793CrossrefMedlineGoogle Scholar
416. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS, Smith WS; TREVO 2 Trialists. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial.Lancet. 2012; 380:1231–1240. doi: 10.1016/S0140-6736(12)61299-9CrossrefMedlineGoogle Scholar
417. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO; SWIFT Trialists. Solitaire flow restoration device versus the Merci retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial.Lancet. 2012; 380:1241–1249. doi: 10.1016/S0140-6736(12)61384-1CrossrefMedlineGoogle Scholar
418. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, Miyamoto S, Sasaki M, Inoue T; for the MELT Japan Study Group. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan.Stroke. 2007; 38:2633–2639. doi: 10.1161/STROKEAHA.107.488551LinkGoogle Scholar
419. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, et al. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial: Prolyse in Acute Cerebral Thromboembolism.JAMA. 1999; 282:2003–2011. doi: 10.1001/jama.282.21.2003CrossrefMedlineGoogle Scholar
420. Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, Wardlaw JM, Deeks JJ. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms.Cochrane Database Syst Rev. 2009:CD007424.MedlineGoogle Scholar
421. Wardlaw JM, Carpenter T, Sakka E, Mair G, Cohen G, Shuler K, Palmer JM, Innes K, Sandercock PA. Imaging perfusion deficits, arterial patency and thrombolysis safety and efficacy in acute ischaemic stroke An observational study of the effect of advanced imaging methods in the Third International Stroke Trial (IST-3), a randomised controlled trial.In: Efficacy and Mechanism Evaluation, No. 1.1.Southampton, UK: NIHR Journals Library; 2014.Google Scholar
422. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, et al; EPITHET Investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial.Lancet Neurol. 2008; 7:299–309. doi: 10.1016/S1474-4422(08)70044-9CrossrefMedlineGoogle Scholar
423. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, Sachara C, Soehngen M, Warach S, Hacke W; DEDAS Investigators. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset.Stroke. 2006; 37:1227–1231. doi: 10.1161/01.STR.0000217403.66996.6dLinkGoogle Scholar
424. Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study: Thrombolytic Therapy in Acute Ischemic Stroke Study Investigators.Stroke. 2000; 31:811–816. doi: 10.1161/01.str.31.4.811AbstractGoogle Scholar
425. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS Study: a randomized controlled trial: Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke.JAMA. 1999; 282:2019–2026. doi: 10.1001/jama.282.21.2019CrossrefMedlineGoogle Scholar
426. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II): Second European-Australasian Acute Stroke Study Investigators.Lancet. 1998; 352:1245–1251. doi: 10.1016/s0140-6736(98)08020-9CrossrefMedlineGoogle Scholar
427. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS).JAMA. 1995; 274:1017–1025.CrossrefMedlineGoogle Scholar
428. Seet RC, Rabinstein AA. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions.Cerebrovasc Dis. 2012; 34:106–114. doi: 10.1159/000339675CrossrefMedlineGoogle Scholar
429. Ali K, Warusevitane A, Lally F, Sim J, Sills S, Pountain S, Nevatte T, Allen M, Roffe C. The Stroke Oxygen Pilot Study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke: effect on key outcomes at six months.PLoS One. 2014; 8:e59274. doi: 10.1371/journal.pone.0059274CrossrefMedlineGoogle Scholar
430. Singhal A, Partners SPOTRIAS Investigators. A phase IIB clinical trial of normobaric oxygen therapy (NBO) in acute ischemic stroke (AIS) (S02.001).Neurology. 2013; 80(suppl):S02.001.Google Scholar
431. Roffe C, Ali K, Warusevitane A, Sills S, Pountain S, Allen M, Hodsoll J, Lally F, Jones P, Crome P. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke: effect on recovery of neurological function at one week.PLoS One. 2011; 6:e19113. doi: 10.1371/journal.pone.0019113CrossrefMedlineGoogle Scholar
432. Roffe C, Sills S, Pountain SJ, Allen M. A randomized controlled trial of the effect of fixed-dose routine nocturnal oxygen supplementation on oxygen saturation in patients with acute stroke.J Stroke Cerebrovasc Dis. 2010; 19:29–35. doi: 10.1016/j.jstrokecerebrovasdis.2009.02.008CrossrefMedlineGoogle Scholar
433. Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, Buonanno FS, Gonzalez RG, Sorensen AG. A pilot study of normobaric oxygen therapy in acute ischemic stroke.Stroke. 2005; 36:797–802. doi: 10.1161/01.STR.0000158914.66827.2eLinkGoogle Scholar
434. Rønning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial.Stroke. 1999; 30:2033–2037. doi: 10.1161/01.str.30.10.2033LinkGoogle Scholar
435. Adelman EE, Scott PA, Skolarus LE, Fox AK, Frederiksen SM, Meurer WJ. Protocol deviations before and after treatment with intravenous tissue plasminogen activator in community hospitals.J Stroke Cerebrovasc Dis. 2016; 25:67–73. doi: 10.1016/j.jstrokecerebrovasdis.2015.08.036CrossrefMedlineGoogle Scholar
436. Kodankandath TV, Shaji J, Kohn N, Arora R, Salamon E, Libman RB, Katz JM. Poor hypertension control and longer transport times are associated with worse outcome in drip-and-ship stroke patients.J Stroke Cerebrovasc Dis. 2016; 25:1887–1890. doi: 10.1016/j.jstrokecerebrovasdis.2016.04.013CrossrefMedlineGoogle Scholar
437. Lyerly MJ, Albright KC, Boehme AK, Bavarsad Shahripour R, Houston JT, Rawal PV, Kapoor N, Alvi M, Sisson A, Alexandrov AW, et al. Safety of protocol violations in acute stroke tPA administration.J Stroke Cerebrovasc Dis. 2014; 23:855–860. doi: 10.1016/j.jstrokecerebrovasdis.2013.07.019CrossrefMedlineGoogle Scholar
438. Kellert L, Rocco A, Sykora M, Hacke W, Ringleb PA. Frequency of increased blood pressure levels during systemic thrombolysis and risk of intracerebral hemorrhage.Stroke. 2011; 42:1702–1706. doi: 10.1161/STROKEAHA.110.604744LinkGoogle Scholar
439. Karaszewski B, Thomas RG, Dennis MS, Wardlaw JM. Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome.BMC Neurol. 2012; 12:123. doi: 10.1186/1471-2377-12-123CrossrefMedlineGoogle Scholar
440. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW. An early rise in body temperature is related to unfavorable outcome after stroke: data from the PAIS study.J Neurol. 2011; 258:302–307. doi: 10.1007/s00415-010-5756-4CrossrefMedlineGoogle Scholar
441. Broessner G, Beer R, Lackner P, Helbok R, Fischer M, Pfausler B, Rhorer J, Küppers-Tiedt L, Schneider D, Schmutzhard E. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease: bicenter prospective, randomized trial.Stroke. 2009; 40:e657–e665. doi: 10.1161/STROKEAHA.109.557652LinkGoogle Scholar
442. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW; PAIS Investigators. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial.Lancet Neurol. 2009; 8:434–440. doi: 10.1016/S1474-4422(09)70051-1CrossrefMedlineGoogle Scholar
443. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, Belagaje SR, Thomas TT, Anderson AM, Frankel MR, et al. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I).J Neurointerv Surg. 2014; 6:91–95. doi: 10.1136/neurintsurg-2013-010656CrossrefMedlineGoogle Scholar
444. Su Y, Fan L, Zhang Y, Zhang Y, Ye H, Gao D, Chen W, Liu G. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction.Stroke. 2016; 47:457–463. doi: 10.1161/STROKEAHA.115.009789LinkGoogle Scholar
445. Hong JM, Lee JS, Song HJ, Jeong HS, Jung HS, Choi HA, Lee K. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke.Stroke. 2014; 45:134–140. doi: 10.1161/STROKEAHA.113.003143LinkGoogle Scholar
446. Ovesen C, Brizzi M, Pott FC, Thorsen-Meyer HC, Karlsson T, Ersson A, Christensen H, Norrlin A, Meden P, Krieger DW, et al. Feasibility of endovascular and surface cooling strategies in acute stroke.Acta Neurol Scand. 2013; 127:399–405. doi: 10.1111/ane.12059CrossrefMedlineGoogle Scholar
447. Li W, Lin L, Zhang M, Wu Y, Liu C, Li X, Huang S, Liang C, Wang Y, Chen J, et al. Safety and preliminary efficacy of early tirofiban treatment after alteplase in acute ischemic stroke patients.Stroke. 2016; 47:2649–2651. doi: 10.1161/STROKEAHA.116.014413LinkGoogle Scholar
448. Wada T, Yasunaga H, Horiguchi H, Fushimi K, Matsubara T, Nakajima S, Yahagi N. Ozagrel for patients with noncardioembolic ischemic stroke: a propensity score-matched analysis.J Stroke Cerebrovasc Dis. 2016; 25:2828–2837. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.044CrossrefMedlineGoogle Scholar
449. Mori E, Minematsu K, Nakagawara J, Hasegawa Y, Nagahiro S, Okada Y, Truelsen T, Lindsten A, Ogawa A, Yamaguchi T; on behalf of the DIAS-J Investigators. Safety and tolerability of desmoteplase within 3 to 9 hours after symptoms onset in Japanese patients with ischemic stroke.Stroke. 2015; 46:2549–2554. doi: 10.1161/STROKEAHA.115.009917LinkGoogle Scholar
450. Multicenter Acute Stroke Trial–Europe Study Group, Hommel M, Cornu C, Boutitie F, Boissel JP. Thrombolytic therapy with streptokinase in acute ischemic stroke.N Engl J Med. 1996; 335:145–150. doi: 10.1056/NEJM199607183350301Google Scholar
451. Multicentre Acute Stroke Trial–Italy (MAST-I) Group. Randomised controlled trial of streptokinase, aspirin, and combination of both in treatment of acute ischaemic stroke.Lancet. 1995; 346:1509–1514.CrossrefMedlineGoogle Scholar
452. Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Davalos A, Bonafe A, Jahan R, Fischer U, Gralla J, et al. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemic stroke: a pooled analysis of the SWIFT and STAR studies.JAMA Neurol. 2017; 74:268–274. doi: 10.1001/jamaneurol.2016.5374CrossrefMedlineGoogle Scholar
453. Grech R, Pullicino R, Thornton J, Downer J. An efficacy and safety comparison between different stentriever designs in acute ischaemic stroke: a systematic review and meta-analysis.Clin Radiol. 2016; 71:48–57. doi: 10.1016/j.crad.2015.09.011CrossrefMedlineGoogle Scholar
454. Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis.BMJ. 2016; 353:i1754. doi: 10.1136/bmj.i1754CrossrefMedlineGoogle Scholar
455. Touma L, Filion KB, Sterling LH, Atallah R, Windle SB, Eisenberg MJ. Stent retrievers for the treatment of acute ischemic stroke: a systematic review and meta-analysis of randomized clinical trials.JAMA Neurol. 2016; 73:275–281. doi: 10.1001/jamaneurol.2015.4441CrossrefMedlineGoogle Scholar
456. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, et al. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis.JAMA. 2015; 314:1832–1843. doi: 10.1001/jama.2015.13767CrossrefMedlineGoogle Scholar
457. Chen CJ, Ding D, Starke RM, Mehndiratta P, Crowley RW, Liu KC, Southerland AM, Worrall BB. Endovascular vs medical management of acute ischemic stroke.Neurology. 2015; 85:1980–1990. doi: 10.1212/WNL.0000000000002176CrossrefMedlineGoogle Scholar
458. Elgendy IY, Kumbhani DJ, Mahmoud A, Bhatt DL, Bavry AA. Mechanical Thrombectomy for acute ischemic stroke: a meta-analysis of randomized trials.J Am Coll Cardiol. 2015; 66:2498–2505. doi: 10.1016/j.jacc.2015.09.070CrossrefMedlineGoogle Scholar
459. Fargen KM, Neal D, Fiorella DJ, Turk AS, Froehler M, Mocco J. A meta-analysis of prospective randomized controlled trials evaluating endovascular therapies for acute ischemic stroke.J Neurointerv Surg. 2015; 7:84–89. doi: 10.1136/neurintsurg-2014-011543CrossrefMedlineGoogle Scholar
460. Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis.J Neurointerv Surg. 2015; 7:868–874. doi: 10.1136/neurintsurg-2014-011418CrossrefMedlineGoogle Scholar
461. Marmagkiolis K, Hakeem A, Cilingiroglu M, Gundogdu B, Iliescu C, Tsitlakidou D, Katramados A. Safety and efficacy of stent retrievers for the management of acute ischemic stroke: comprehensive review and meta-analysis.JACC Cardiovasc Interv. 2015; 8:1758–1765. doi: 10.1016/j.jcin.2015.07.021CrossrefMedlineGoogle Scholar
462. Yarbrough CK, Ong CJ, Beyer AB, Lipsey K, Derdeyn CP. Endovascular thrombectomy for anterior circulation stroke: systematic review and meta-analysis.Stroke. 2015; 46:3177–3183. doi: 10.1161/STROKEAHA.115.009847LinkGoogle Scholar
463. Almekhlafi MA, Menon BK, Freiheit EA, Demchuk AM, Goyal M. A meta-analysis of observational intra-arterial stroke therapy studies using the Merci device, Penumbra system, and retrievable stents.AJNR Am J Neuroradiol. 2013; 34:140–145. doi: 10.3174/ajnr.A3276CrossrefMedlineGoogle Scholar
464. Fields JD, Khatri P, Nesbit GM, Liu KC, Barnwell SL, Lutsep HL, Clark WM, Lansberg MG. Meta-analysis of randomized intra-arterial thrombolytic trials for the treatment of acute stroke due to middle cerebral artery occlusion.J Neurointerv Surg. 2011; 3:151–155. doi: 10.1136/jnis.2010.002766CrossrefMedlineGoogle Scholar
465. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, Dunker D, Schnabel K, Wikholm G, Hellström M, et al. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (Anesthesia During Stroke).Stroke. 2017; 48:1601–1607. doi: 10.1161/STROKEAHA.117.016554LinkGoogle Scholar
466. Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis.AJNR Am J Neuroradiol. 2015; 36:525–529. doi: 10.3174/ajnr.A4159CrossrefMedlineGoogle Scholar
467. Wada T, Yasunaga H, Horiguchi H, Matsubara T, Fushimi K, Nakajima S, Yahagi N. Outcomes of argatroban treatment in patients with atherothrombotic stroke: observational nationwide study in Japan.Stroke. 2016; 47:471–476. doi: 10.1161/STROKEAHA.115.011250LinkGoogle Scholar
468. Sandercock PA, Counsell C, Kamal AK. Anticoagulants for acute ischaemic stroke.Cochrane Database Syst Rev. 2008:CD000024.MedlineGoogle Scholar
469. Wang Q, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin and early neurologic deterioration in acute stroke caused by large artery occlusive disease.Arch Neurol. 2012; 69:1454–1460. doi: 10.1001/archneurol.2012.1633CrossrefMedlineGoogle Scholar
470. Wang QS, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin versus aspirin for acute ischemic stroke with large artery occlusive disease: subgroup analyses from the Fraxiparin in Stroke Study for the treatment of ischemic stroke (FISS-tris) study.Stroke. 2012; 43:346–349. doi: 10.1161/STROKEAHA.111.628347LinkGoogle Scholar
471. Abdul-Rahim AH, Fulton RL, Frank B, Tatlisumak T, Paciaroni M, Caso V, Diener HC, Lees KR; VISTA Collaborators. Association of improved outcome in acute ischaemic stroke patients with atrial fibrillation who receive early antithrombotic therapy: analysis from VISTA.Eur J Neurol. 2015; 22:1048–1055. doi: 10.1111/ene.12577CrossrefMedlineGoogle Scholar
472. Jensen J, Salottolo K, Frei D, Loy D, McCarthy K, Wagner J, Whaley M, Bellon R, Bar-Or D. Comprehensive analysis of intra-arterial treatment for acute ischemic stroke due to cervical artery dissection.J Neurointerv Surg. 2017; 9:654–658. doi: 10.1136/neurintsurg-2016-012421CrossrefMedlineGoogle Scholar
474. Seedat J, Penn C. Implementing oral care to reduce aspiration pneumonia amongst patients with dysphagia in a South African setting.S Afr J Commun Disord. 2016;63. doi: 10.4102/sajcd.v63i1.102Google Scholar
475. Geeganage CM, Sprigg N, Bath MW, Bath PM. Balance of symptomatic pulmonary embolism and symptomatic intracerebral hemorrhage with low-dose anticoagulation in recent ischemic stroke: a systematic review and meta-analysis of randomized controlled trials.J Stroke Cerebrovasc Dis. 2013; 22:1018–1027. doi: 10.1016/j.jstrokecerebrovasdis.2012.03.005CrossrefMedlineGoogle Scholar
476. Qaseem A, Chou R, Humphrey LL, Starkey M, Shekelle P; Clinical Guidelines Committee of the American College of Physicians. Venous thromboembolism prophylaxis in hospitalized patients: a clinical practice guideline from the American College of Physicians.Ann Intern Med. 2011; 155:625–632. doi: 10.7326/0003-4819-155-9-201111010-00011CrossrefMedlineGoogle Scholar
477. Wang SB, Wang YY, Zhang QE, Wu SL, Ng CH, Ungvari GS, Chen L, Wang CX, Jia FJ, Xiang YT. Cognitive behavioral therapy for post-stroke depression: a meta-analysis.J Affect Disord. 2018; 235:589–596. doi: 10.1016/j.jad.2018.04.011Google Scholar
478. Qin B, Chen H, Gao W, Zhao LB, Zhao MJ, Qin HX, Chen W, Chen L, Yang MX. Efficacy, acceptability, and tolerability of antidepressant treatments for patients with post-stroke depression: a network meta-analysis.Braz J Med Biol Res. 2018; 51:e7218. doi: 10.1590/1414-431x20187218Google Scholar
479. Cui M, Huang CY, Wang F. Efficacy and safety of citalopram for the treatment of poststroke depression: a meta-analysis.J Stroke Cerebrovasc Dis. 2018; 27:2905–2918. doi: 10.1016/j.jstrokecerebrovasdis.2018.07.027Google Scholar
480. Deng L, Qiu S, Yang Y, Wang L, Li Y, Lin J, Wei Q, Yang L, Wang D, Liu M. Efficacy and tolerability of pharmacotherapy for post-stroke depression: a network meta-analysis.Oncotarget. 2018; 9:23718–23728. doi: 10.18632/oncotarget.23891MedlineGoogle Scholar
481. Sun Y, Liang Y, Jiao Y, Lin J, Qu H, Xu J, Zhao C. Comparative efficacy and acceptability of antidepressant treatment in poststroke depression: a multiple-treatments meta-analysis.BMJ Open. 2017; 7:e016499. doi: 10.1136/bmjopen-2017-016499Google Scholar
482. Deng L, Sun X, Qiu S, Xiong Y, Li Y, Wang L, Wei Q, Wang D, Liu M. Interventions for management of post-stroke depression: a bayesian network meta-analysis of 23 randomized controlled trials.Sci Rep. 2017; 7:16466. doi: 10.1038/s41598-017-16663-0Google Scholar
483. Shen X, Liu M, Cheng Y, Jia C, Pan X, Gou Q, Liu X, Cao H, Zhang L. Repetitive transcranial magnetic stimulation for the treatment of post-stroke depression: a systematic review and meta-analysis of randomized controlled clinical trials.J Affect Disord. 2017; 211:65–74. doi: 10.1016/j.jad.2016.12.058Google Scholar
484. Xu XM, Zou DZ, Shen LY, Liu Y, Zhou XY, Pu JC, Dong MX, Wei YD. Efficacy and feasibility of antidepressant treatment in patients with post-stroke depression.Medicine (Baltimore). 2016; 95:e5349. doi: 10.1097/MD.0000000000005349Google Scholar
485. Tan S, Huang X, Ding L, Hong H. Efficacy and safety of citalopram in treating post-stroke depression: a meta-analysis.Eur Neurol. 2015; 74:188–201. doi: 10.1159/000441446CrossrefMedlineGoogle Scholar
486. Hackett ML, Anderson CS, House A, Xia J. Interventions for treating depression after stroke.Cochrane Database Syst Rev. 2008:CD003437.MedlineGoogle Scholar
487. Herisson F, Godard S, Volteau C, Le Blanc E, Guillon B, Gaudron M; SEVEL Study Group. Early Sitting in Ischemic Stroke Patients (SEVEL): a randomized controlled trial.PLoS One. 2016; 11:e0149466. doi: 10.1371/journal.pone.0149466CrossrefMedlineGoogle Scholar
488. Morreale M, Marchione P, Pili A, Lauta A, Castiglia SF, Spallone A, Pierelli F, Giacomini P. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach?Eur J Phys Rehabil Med. 2016; 52:81–89.MedlineGoogle Scholar
489. Meenan RT, Saha S, Chou R, Swarztrauber K, Pyle Krages K, O’Keeffe-Rosetti MC, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Cost-effectiveness of echocardiography to identify intracardiac thrombus among patients with first stroke or transient ischemic attack.Med Decis Making. 2007; 27:161–177. doi: 10.1177/0272989X06297388Google Scholar
490. McNamara RL, Lima JA, Whelton PK, Powe NR. Echocardiographic identification of cardiovascular sources of emboli to guide clinical management of stroke: a cost-effectiveness analysis.Ann Intern Med. 1997; 127:775–787. doi: 10.7326/0003-4819-127-9-199711010-00001CrossrefMedlineGoogle Scholar
491. Shariat A, Yaghoubi E, Farazdaghi M, Aghasadeghi K, Borhani Haghighi A. Comparison of medical treatments in cryptogenic stroke patients with patent foramen ovale: a randomized clinical trial.J Res Med Sci. 2013; 18:94–98.MedlineGoogle Scholar
492. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP; for the PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study.Circulation. 2002; 105:2625–2631. doi: 10.1161/01.cir.0000017498.88393.44LinkGoogle Scholar
493. Ma Y, Li D, Bai F, Qin F, Li J, Li Y, Liu N, Xie H, Zhou S, Liu Q. Patent foramen ovale closure or medical therapy for secondary prevention of cryptogenic stroke: an update meta-analysis of randomized controlled trials.Medicine (Baltimore). 2018; 97:e11965. doi: 10.1097/MD.0000000000011965Google Scholar
494. Schulze V, Lin Y, Karathanos A, Brockmeyer M, Zeus T, Polzin A, Perings S, Kelm M, Wolff G. Patent foramen ovale closure or medical therapy for cryptogenic ischemic stroke: an updated meta-analysis of randomized controlled trials.Clin Res Cardiol. 2018; 107:745–755. doi: 10.1007/s00392-018-1224-4Google Scholar
495. Fiorelli EM, Carandini T, Gagliardi D, Bozzano V, Bonzi M, Tobaldini E, Comi GP, Scarpini EA, Montano N, Solbiati M. Secondary prevention of cryptogenic stroke in patients with patent foramen ovale: a systematic review and meta-analysis.Intern Emerg Med. 2018; 13:1287–1303. doi: 10.1007/s11739-018-1909-8Google Scholar
496. Xu HB, Zhang H, Qin Y, Xue F, Xiong G, Yang L, Bai H, Wu J. Patent foramen ovale closure versus medical therapy for cryptogenic stroke: An updated meta-analysis.J Neurol Sci. 2018; 390:139–149. doi: 10.1016/j.jns.2018.04.029Google Scholar
497. Tsivgoulis G, Katsanos AH, Mavridis D, Frogoudaki A, Vrettou AR, Ikonomidis I, Parissis J, Deftereos S, Karapanayiotides T, Palaiodimou L, et al. Percutaneous patent foramen ovale closure for secondary stroke prevention: network meta-analysis.Neurology. 2018; 91:e8–e18. doi: 10.1212/WNL.0000000000005739Google Scholar
498. Ahmad Y, Howard JP, Arnold A, Shin MS, Cook C, Petraco R, Demir O, Williams L, Iglesias JF, Sutaria N, et al. Patent foramen ovale closure vs. medical therapy for cryptogenic stroke: a meta-analysis of randomized controlled trials.Eur Heart J. 2018; 39:1638–1649. doi: 10.1093/eurheartj/ehy121CrossrefMedlineGoogle Scholar
499. Riaz H, Khan MS, Schenone AL, Waheed AA, Khan AR, Krasuski RA. Transcatheter closure of patent foramen ovale following cryptogenic stroke: an updated meta-analysis of randomized controlled trials.Am Heart J. 2018; 199:44–50. doi: 10.1016/j.ahj.2018.01.008Google Scholar
500. Shah R, Nayyar M, Jovin IS, Rashid A, Bondy BR, Fan TM, Flaherty MP, Rao SV. Device closure versus medical therapy alone for patent foramen ovale in patients with cryptogenic stroke: a systematic review and meta-analysis.Ann Intern Med. 2018; 168:335–342. doi: 10.7326/M17-2679Google Scholar
501. De Rosa S, Sievert H, Sabatino J, Polimeni A, Sorrentino S, Indolfi C. Percutaneous closure versus medical treatment in stroke patients with patent foramen ovale: a systematic review and meta-analysis.Ann Intern Med. 2018; 168:343–350. doi: 10.7326/M17-3033Google Scholar
502. Zhang XL, Kang LN, Wang L, Xu B. Percutaneous closure versus medical therapy for stroke with patent foramen ovale: a systematic review and meta-analysis.BMC Cardiovasc Disord. 2018; 18:45. doi: 10.1186/s12872-018-0780-xGoogle Scholar
503. Palaiodimos L, Kokkinidis DG, Faillace RT, Foley TR, Dangas GD, Price MJ, Mastoris I. Percutaneous closure of patent foramen ovale vs. medical treatment for patients with history of cryptogenic stroke: a systematic review and meta-analysis of randomized controlled trials.Cardiovasc Revasc Med. 2018; 19(pt B):852–858. doi: 10.1016/j.carrev.2018.02.014Google Scholar
504. Ando T, Holmes AA, Pahuja M, Javed A, Briasoulis A, Telila T, Takagi H, Schreiber T, Afonso L, Grines CL, et al. Meta-analysis comparing patent foramen ovale closure versus medical therapy to prevent recurrent cryptogenic stroke.Am J Cardiol. 2018; 121:649–655. doi: 10.1016/j.amjcard.2017.11.037Google Scholar
505. Lattanzi S, Brigo F, Cagnetti C, Di Napoli M, Silvestrini M. Patent foramen ovale and cryptogenic stroke or transient ischemic attack: to close or not to close? A systematic review and meta-analysis.Cerebrovasc Dis. 2018; 45:193–203. doi: 10.1159/000488401Google Scholar
507. Johansson E, Cuadrado-Godia E, Hayden D, Bjellerup J, Ois A, Roquer J, Wester P, Kelly PJ. Recurrent stroke in symptomatic carotid stenosis awaiting revascularization: a pooled analysis.Neurology. 2016; 86:498–504. doi: 10.1212/WNL.0000000000002354CrossrefMedlineGoogle Scholar
508. Bazan HA, Zea N, Jennings B, Smith TA, Vidal G, Sternbergh WCUrgent carotid intervention is safe after thrombolysis for minor to moderate acute ischemic stroke.J Vasc Surg. 2015; 62:1529–1538. doi: 10.1016/j.jvs.2015.07.082CrossrefMedlineGoogle Scholar
509. Chisci E, Pigozzi C, Troisi N, Tramacere L, Zaccara G, Cincotta M, Ercolini L, Michelagnoli S. Thirty-day neurologic improvement associated with early versus delayed carotid endarterectomy in symptomatic patients.Ann Vasc Surg. 2015; 29:435–442. doi: 10.1016/j.avsg.2014.08.028CrossrefMedlineGoogle Scholar
510. Devlin TG, Phade SV, Hutson RK, Fugate MW, Major GR, Albers GW, Sirelkhatim AA, Sapkota BL, Quartfordt SD, Baxter BW. Computed tomography perfusion imaging in the selection of acute stroke patients to undergo emergent carotid endarterectomy.Ann Vasc Surg. 2015; 29:125.e1–125.11. doi: 10.1016/j.avsg.2014.07.023CrossrefGoogle Scholar
511. Steglich-Arnholm H, Holtmannspötter M, Kondziella D, Wagner A, Stavngaard T, Cronqvist ME, Hansen K, Højgaard J, Taudorf S, Krieger DW. Thrombectomy assisted by carotid stenting in acute ischemic stroke management: benefits and harms.J Neurol. 2015; 262:2668–2675. doi: 10.1007/s00415-015-7895-0CrossrefMedlineGoogle Scholar
512. Ferrero E, Ferri M, Viazzo A, Labate C, Berardi G, Pecchio A, Piazza S, Ripepi M, Nessi F. A retrospective study on early carotid endarterectomy within 48 hours after transient ischemic attack and stroke in evolution.Ann Vasc Surg. 2014; 28:227–238. doi: 10.1016/j.avsg.2013.02.015CrossrefMedlineGoogle Scholar
513. Liu L, Wong KS, Leng X, Pu Y, Wang Y, Jing J, Zou X, Pan Y, Wang A, Meng X, et al; CHANCE Investigators. Dual antiplatelet therapy in stroke and ICAS: subgroup analysis of CHANCE.Neurology. 2015; 85:1154–1162. doi: 10.1212/WNL.0000000000001972CrossrefMedlineGoogle Scholar
514. Jung JM, Kang DW, Yu KH, Koo JS, Lee JH, Park JM, Hong KS, Cho YJ, Kim JS, Kwon SU; TOSS-2 Investigators. Predictors of recurrent stroke in patients with symptomatic intracranial arterial stenosis.Stroke. 2012; 43:2785–2787. doi: 10.1161/STROKEAHA.112.659185LinkGoogle Scholar
515. Coutts SB, Wein TH, Lindsay MP, Buck B, Cote R, Ellis P, Foley N, Hill MD, Jaspers S, Jin AY, et al; Heart, and Stroke Foundation Canada Canadian Stroke Best Practices Advisory Committee. Canadian stroke best practice recommendations: secondary prevention of stroke guidelines, update 2014.Int J Stroke. 2015; 10:282–291. doi: 10.1111/ijs.12439CrossrefMedlineGoogle Scholar
516. Lanza G, Ricci S, Setacci C, Castelli P, Novalil C, Pratesi C, Speziale F, Cremonesi A, Morlacchi E, Lanza J, et al. An update on Italian Stroke Organization guidelines on carotid endarterectomy and stenting.Int J Stroke. 2014; 9(suppl A100):14–19. doi: 10.1111/ijs.12226CrossrefMedlineGoogle Scholar
517. Kakisis JD, Avgerinos ED, Antonopoulos CN, Giannakopoulos TG, Moulakakis K, Liapis CD. The European Society for Vascular Surgery guidelines for carotid intervention: an updated independent assessment and literature review.Eur J Vasc Endovasc Surg. 2012; 44:238–243.CrossrefMedlineGoogle Scholar
518. Paraskevas KI, Mikhailidis DP, Veith FJ. Comparison of the five 2011 guidelines for the treatment of carotid stenosis.J Vasc Surg. 2012; 55:1504–1508.CrossrefMedlineGoogle Scholar
519. Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, Cates CU, Creager MA, Fowler SB, Friday G, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery [published correction appears in Circulation. 2011;124:e145].Circulation. 2011; 124:489–532. doi: 10.1161/CIR.0b013e31820d8d78AbstractGoogle Scholar
520. Ricotta JJ, Aburahma A, Ascher E, Eskandari M, Faries P, Lal BK; Society for Vascular Surgery. Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease: executive summary.J Vasc Surg. 2011; 54:832–836. doi: 10.1016/j.jvs.2011.07.004CrossrefMedlineGoogle Scholar
521. Carotid Stenting Guidelines Committee: an Intercollegiate Committee of the RACP, RACS AND RANZCR. Guidelines for patient selection and performance of carotid artery stenting.Intern Med J. 2011; 41:344–347. doi: 10.1111/j.1445-5994.2011.02445.xGoogle Scholar
522. Sheffet AJ, Roubin G, Howard G, Howard V, Moore W, Meschia JF, Hobson RW, Brott TG. Design of the Carotid Revascularization Endarterectomy vs. Stenting Trial (CREST).Int J Stroke. 2010; 5:40–46. doi: 10.1111/j.1747-4949.2009.00405.xCrossrefMedlineGoogle Scholar
523. Latchaw RE, Alberts MJ, Lev MH, Connors JJ, Harbaugh RE, Higashida RT, Hobson R, Kidwell CS, Koroshetz WJ, Mathews V, et al; on behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, and the Interdisciplinary Council on Peripheral Vascular Disease. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association.Stroke. 2009; 40:3646–3678. doi: 10.1161/STROKEAHA.108.192616LinkGoogle Scholar
524. European Stroke Organisation Executive Committee and ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008.Cerebrovasc Dis. 2008; 25:457–507. doi: 10.1159/000131083Google Scholar
525. Masdeu JC, Irimia P, Asenbaum S, Bogousslavsky J, Brainin M, Chabriat H, Herholz K, Markus HS, Martínez-Vila E, Niederkorn K, et al; EFNS. EFNS guideline on neuroimaging in acute stroke: report of an EFNS task force.Eur J Neurol. 2006; 13:1271–1283. doi: 10.1111/j.1468-1331.2006.01507.xCrossrefMedlineGoogle Scholar
526. Limone BL, Baker WL, Mearns ES, White CM, Kluger J, Coleman CI. Common flaws exist in published cost-effectiveness models of pharmacologic stroke prevention in atrial fibrillation.J Clin Epidemiol. 2014; 67:1093–1102. doi: 10.1016/j.jclinepi.2014.05.013CrossrefMedlineGoogle Scholar
527. Higgins P, MacFarlane PW, Dawson J, McInnes GT, Langhorne P, Lees KR. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial.Stroke. 2013; 44:2525–2531. doi: 10.1161/STROKEAHA.113.001927LinkGoogle Scholar
528. Miles JA, Garber L, Ghosh S, Spevack DM. Association of transthoracic echocardiography findings and long-term outcomes in patients undergoing workup of stroke.J Stroke Cerebrovasc Dis. 2018; 27:2943–2950. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.023Google Scholar
529. Haeusler KG, Wollboldt C, Bentheim LZ, Herm J, Jäger S, Kunze C, Eberle HC, Deluigi CC, Bruder O, Malsch C, et al. Feasibility and diagnostic value of cardiovascular magnetic resonance imaging after acute ischemic stroke of undetermined origin.Stroke. 2017; 48:1241–1247. doi: 10.1161/STROKEAHA.116.016227LinkGoogle Scholar
530. Katsanos AH, Giannopoulos S, Frogoudaki A, Vrettou AR, Ikonomidis I, Paraskevaidis I, Zompola C, Vadikolias K, Boviatsis E, Parissis J, et al. The diagnostic yield of transesophageal echocardiography in patients with cryptogenic cerebral ischaemia: a meta-analysis.Eur J Neurol. 2016; 23:569–579. doi: 10.1111/ene.12897Google Scholar
535. Gaudron M, Bonnaud I, Ros A, Patat F, de Toffol B, Giraudeau B, Debiais S. Diagnostic and therapeutic value of echocardiography during the acute phase of ischemic stroke.J Stroke Cerebrovasc Dis. 2014; 23:2105–2109. doi: 10.1016/j.jstrokecerebrovasdis.2014.03.018Google Scholar
532. Kim SJ, Choe YH, Park SJ, Kim GM, Chung CS, Lee KH, Bang OY. Routine cardiac evaluation in patients with ischaemic stroke and absence of known atrial fibrillation or coronary heart disease: transthoracic echocardiography vs. multidetector cardiac computed tomography.Eur J Neurol. 2012; 19:317–323. doi: 10.1111/j.1468-1331.2011.03505.xCrossrefMedlineGoogle Scholar
533. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EEClassification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial: TOAST: Trial of Org 10172 in Acute Stroke Treatment.Stroke. 1993; 24:35–41. doi: 10.1161/01.str.24.1.35LinkGoogle Scholar
534. Galougahi KK, Stewart T, Choong CY, Storey CE, Yates M, Tofler GH. The utility of transoesophageal echocardiography to determine management in suspected embolic stroke.Intern Med J. 2010; 40:813–818. doi: 10.1111/j.1445-5994.2009.02103.xGoogle Scholar
536. de Bruijn SF, Agema WR, Lammers GJ, van der Wall EE, Wolterbeek R, Holman ER, Bollen EL, Bax JJ. Transesophageal echocardiography is superior to transthoracic echocardiography in management of patients of any age with transient ischemic attack or stroke.Stroke. 2006; 37:2531–2534. doi: 10.1161/01.STR.0000241064.46659.69LinkGoogle Scholar
537. Harloff A, Handke M, Reinhard M, Geibel A, Hetzel A. Therapeutic strategies after examination by transesophageal echocardiography in 503 patients with ischemic stroke.Stroke. 2006; 37:859–864. doi: 10.1161/01.STR.0000202592.87021.b7LinkGoogle Scholar
538. Abreu TT, Mateus S, Correia J. Therapy implications of transthoracic echocardiography in acute ischemic stroke patients.Stroke. 2005; 36:1565–1566. doi: 10.1161/01.STR.0000170636.08554.49LinkGoogle Scholar
539. Vitebskiy S, Fox K, Hoit BD. Routine transesophageal echocardiography for the evaluation of cerebral emboli in elderly patients.Echocardiography. 2005; 22:770–774. doi: 10.1111/j.1540-8175.2005.00079.xGoogle Scholar
540. Kim JT, Park MS, Choi KH, Cho KH, Kim BJ, Han MK, Park TH, Park SS, Lee KB, Lee BC, et al. Different antiplatelet strategies in patients with new ischemic stroke while taking aspirin.Stroke. 2016; 47:128–134. doi: 10.1161/STROKEAHA.115.011595LinkGoogle Scholar
541. Lee M, Wu YL, Saver JL, Lee HC, Lee JD, Chang KC, Wu CY, Lee TH, Wang HH, Rao NM, et al. Is clopidogrel better than aspirin following breakthrough strokes while on aspirin? A retrospective cohort study.BMJ Open. 2014; 4:e006672. doi: 10.1136/bmjopen-2014-006672CrossrefMedlineGoogle Scholar
542. Aronow HD, Novaro GM, Lauer MS, Brennan DM, Lincoff AM, Topol EJ, Kereiakes DJ, Nissen SE. In-hospital initiation of lipid-lowering therapy after coronary intervention as a predictor of long-term utilization: a propensity analysis.Arch Intern Med. 2003; 163:2576–2582. doi: 10.1001/archinte.163.21.2576CrossrefMedlineGoogle Scholar
543. Stead LF, Koilpillai P, Fanshawe TR, Lancaster T. Combined pharmacotherapy and behavioural interventions for smoking cessation.Cochrane Database Syst Rev. 2016; 3:CD008286. doi: 10.1002/14651858.CD008286.pub3MedlineGoogle Scholar
544. Stead LF, Koilpillai P, Lancaster T. Additional behavioural support as an adjunct to pharmacotherapy for smoking cessation.Cochrane Database Syst Rev. 2015:CD009670. doi: 10.1002/14651858.CD009670.pub3Google Scholar
eLetters(0)
eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.
Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.
eLetters(0)
eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.
Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.