Recent Translational Research Models of Intracranial Atherosclerotic Disease
Abstract
Intracranial atherosclerotic disease (ICAD) is a leading cause of ischemic stroke worldwide. However, research on the pathophysiology of ICAD is scarce due to the relative inaccessibility of histology samples and the lack of comprehensive experimental models. As a result, much of the current understanding of ICAD relies on research on extracranial atherosclerosis. This approach is problematic as intracranial and extracranial arteries are anatomically, structurally, physiologically, and metabolically distinct, indicating that intracranial and extracranial atherosclerosis likely develop through different biologic pathways. The current standard of care for ICAD treatment relies predominantly on therapeutics developed to treat extracranial atherosclerosis and is insufficient given the alarmingly high risk of stroke. To provide a definitive treatment for the disease, a deeper understanding of the pathophysiology underlying ICAD is specifically required. True mechanistic understanding of disease pathogenesis is only possible using robust experimental models. In this review, we aim to identify the advantages and limitations of the existing in vivo and in vitro models of ICAD and basic atherosclerotic processes, which may be used to inform better models of ICAD in the future and drive new therapeutic strategies to reduce stroke risk.
Graphical Abstract

Get full access to this article
View all available purchase options and get full access to this article.
REFERENCES
1.
White H, Boden-Albala B, Wang C, Elkind MSV, Rundek T, Wright CB, Sacco RL. Ischemic stroke subtype incidence among Whites, Blacks, and Hispanics. Circulation. 2005;111:1327–1331. doi: 10.1161/01.CIR.0000157736.19739.D0
2.
Wong LKS. Global burden of intracranial atherosclerosis. International Journal of Stroke. 2006;1:158–159. doi: 10.3390/cells11244060
3.
Romano JG, Prabhakaran S, Nizam A, Feldmann E, Sangha R, Cotsonis G, Campo-Bustillo I, Koch S, Rundek T, Chimowitz MI, et al; MyRIAD Investigators. Infarct recurrence in intracranial atherosclerosis: results from the MyRIAD study. J Stroke Cerebrovasc Dis. 2021;30:105504. doi: 10.1016/j.jstrokecerebrovasdis.2020.105504
4.
Etchevers HC, Vincent C, Douarin NML, Couly G F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development. 2001;128:1059–1068. doi: 10.1242/dev.128.7.1059
5.
Kang DW, Kim DY, Kim J, Baik SH, Jung C, Singh N, Song JW, Bae HJ, Kim BJ. Emerging concept of intracranial arterial diseases: the role of high resolution vessel wall MRI. J Stroke. 2024;26:26–40. doi: 10.5853/jos.2023.02481
6.
Ritz K, Denswil NP, Stam OCG, van Lieshout JJ, Daemen MJAP. Cause and mechanisms of intracranial atherosclerosis. Circulation. 2014;130:1407–1414. doi: 10.1161/CIRCULATIONAHA.114.011147
7.
Chen XY, Fisher M. Pathological characteristics. Front Neurol Neurosci. 2016;40:21–33. doi: 10.1159/000448267
8.
Caplan LR, Gorelick PB, Hier DB. Race, sex and occlusive cerebrovascular disease: a review. Stroke. 1986;17:648–655. doi: 10.1161/01.str.17.4.648
9.
Miyawaki S, Imai H, Shimizu M, Yagi S, Ono H, Mukasa A, Nakatomi H, Shimizu T, Saito N. Genetic variant RNF213 c.14576G>A in various phenotypes of intracranial major artery stenosis/occlusion. Stroke. 2013;44:2894–2897. doi: 10.1161/STROKEAHA.113.002477
10.
Flusty B, de Havenon A, Prabhakaran S, Liebeskind DS, Yaghi S. Intracranial atherosclerosis treatment. Stroke. 2020;51:e49–e53. doi: 10.1161/STROKEAHA.119.028528
11.
Banerjee C, Chimowitz MI. Stroke caused by atherosclerosis of the major intracranial arteries. Circ Res. 2017;120:502–513. doi: 10.1161/CIRCRESAHA.116.308441
12.
Badaut J, Copin JC, Fukuda AM, Gasche Y, Schaller K, da Silva RF. Increase of arginase activity in old apolipoprotein-E deficient mice under Western diet associated with changes in neurovascular unit. J Neuroinflammation. 2012;9:132. doi: 10.1186/1742-2094-9-132
13.
Iwai M, Inaba S, Tomono Y, Kanno H, Iwanami J, Mogi M, Horiuchi M. Attenuation of focal brain ischemia by telmisartan, an angiotensin II type 1 receptor blocker, in atherosclerotic apolipoprotein E-deficient mice. Hypertens Res. 2008;31:161–168. doi: 10.1291/hypres.31.161
14.
Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL. Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE−/−/LDL−/− double knockout mice. Atherosclerosis. 2007;191:73–81. doi: 10.1016/j.atherosclerosis.2006.05.021
15.
Drouin A, Farhat N, Bolduc V, Thorin-Trescases N, Gillis MA, Villeneuve L, Nguyen A, Thorin E. Up-regulation of thromboxane A2 impairs cerebrovascular eNOS function in aging atherosclerotic mice. Pflugers Arch. 2011;462:371–383. doi: 10.1007/s00424-011-0973-y
16.
Yamori Y, Hamashima Y, Horie R, Handa H, Sato M. Pathogenesis of acute arterial fat deposition in spontaneously hypertensive rats. Jpn Circ J. 1975;39:601–609. doi: 10.1253/jcj.39.601
17.
Yamori Y, Horie R, Sato M, Fukase M. Hypertension as an important factor for cerebrovascular atherogenesis in rats. Stroke. 1976;7:120–125. doi: 10.1161/01.str.7.2.120
18.
Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke. 1998;29:1708–13; discussion 1713. doi: 10.1161/01.str.29.8.1708
19.
Fang Y, Huang R, Zhang Y, Lin J, Li J. A preliminary investigation of Tanakan in the treatment of hypertensive arteriosclerosis and stroke in rats. Chin Med J (Engl). 2000;113:425–428
20.
Xia WQ, Niu GZ, Yin CG, Lu S, Bu XY. Effects of lncRNA gm4419 on rats with hypertensive cerebral atherosclerosis through NF-κB pathway. Eur Rev Med Pharmacol Sci. 2019;23:10976–10981. doi: 10.26355/eurrev_201912_19802
21.
Yamori Y, Horie R, Sato M, Fukase M. Hemodynamic derangement for the induction of cerebrovascular fat deposition in normotensive rats on a hypercholesterolemic diet. Stroke. 1976;7:385–389. doi: 10.1161/01.str.7.4.385
22.
Shen J, Stevenson J, Geng X, Yang J, Yin C, Li F, Wang S, Du H, Ji X, Ding Y. A new clinically relevant model for intracranial atherosclerosis in rats. Neurol Res. 2016;38:817–822. doi: 10.1080/01616412.2016.1211232
23.
Shen J, Hafeez A, Stevenson J, Yang J, Yin C, Li F, Wang S, Du H, Ji X, Rafols JA, et al. Omega-3 fatty acid supplement prevents development of intracranial atherosclerosis. Neuroscience. 2016;334:226–235. doi: 10.1016/j.neuroscience.2016.08.013
24.
Shen J, Rastogi R, Guan L, Li F, Du H, Geng X, Ding Y. Omega-3 fatty acid supplement reduces activation of NADPH oxidase in intracranial atherosclerosis stenosis. Neurol Res. 2018;40:499–507. doi: 10.1080/01616412.2018.1451290
25.
Guan L, Geng X, Shen J, Yip J, Li F, Du H, Ji Z, Ding Y. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. Oncotarget. 2018;9:3765–3778. doi: 10.18632/oncotarget.23347
26.
Guan L, Geng X, Stone C, Cosky EEP, Ji Y, Du H, Zhang K, Sun Q, Ding Y. PM2.5 exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. Environ Toxicol. 2019;34:530–538. doi: 10.1002/tox.22707
27.
Kurozumi T, Tanaka K, Yae Y. Hypertension-induced cerebral atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1978;30:137–145. doi: 10.1016/0021-9150(78)90056-4
28.
Kato H, Tokunaga O, Watanabe T, Sunaga T. Experimental cerebral atherosclerosis in the rabbit. Scanning electron microscopic study of the initial lesion site. Pathol Res Pract. 1991;187:797–805. doi: 10.1016/S0344-0338(11)80575-3
29.
Favalli L, Lanza E, Rozza Dionigi A, Assogna G, Goggi D, Ricevuti G. Flunarizine, cerebral blood flow and reversion of experimental atherosclerosis in rabbit. Drugs Exp Clin Res. 1985;11:845–850
30.
Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit): Incidence and development of atherosclerosis and xanthoma. Atherosclerosis. 1980;36:261–268. doi: 10.1016/0021-9150(80)90234-8
31.
Ito T, Shiomi M. Cerebral atherosclerosis occurs spontaneously in homozygous WHHL rabbits. Atherosclerosis. 2001;156:57–66. doi: 10.1016/s0021-9150(00)00622-5
32.
Tang X, Niimi M, Zhou H, Chen L, Chen Y, Yan H, Shiomi M, Fan J. Pathological investigations of intracranial atherosclerosis using multiple hypercholesterolemic rabbit models. Front Endocrinol (Lausanne). 2022;13:834207. doi: 10.3389/fendo.2022.834207
33.
Kong J, Tamaki N, Asada M. Early lesions of cerebral atherosclerosis from induced hypertension in Watanabe heritable hyperlipidemic rabbits. Kobe J Med Sci. 2000;46:87–101
34.
Zabriskie MS, Wang C, Wang S, Alexander MD. Apolipoprotein E knockout rabbit model of intracranial atherosclerotic disease. Animal Model Exp Med. 2020;3:208–213. doi: 10.1002/ame2.12125
35.
Masuda J, Tanaka K. A new model of cerebral arteriosclerosis induced by intimal injury using a silicone rubber cylinder in rabbits. Lab Invest. 1984;51:475–484.
36.
Suzuki M, Yamamoto D, Suzuki T, Fujii M, Suzuki N, Fujishiro M, Sakurai T, Yamada K. High fat and high fructose diet induced intracranial atherosclerosis and enhanced vasoconstrictor responses in non-human primate. Life Sci. 2006;80:200–204. doi: 10.1016/j.lfs.2006.09.002
37.
Hollander W, Prusty S, Kemper T, Rosene DL, Moss MB. The effects of hypertension on cerebral atherosclerosis in the cynomolgus monkey. Stroke. 1993;24:1218–26; discussion 1226. doi: 10.1161/01.str.24.8.1218
38.
Prusty S, Kemper T, Moss MB, Hollander W. Occurrence of stroke in a nonhuman primate model of cerebrovascular disease. Stroke. 1988;19:84–90. doi: 10.1161/01.str.19.1.84
39.
Belza J, Rubinstein LJ, Maier N, Haimovici H. Experimental cerebral atherosclerosis in dogs. Ann N Y Acad Sci. 1968;149:895–906. doi: 10.1111/j.1749-6632.1968.tb53845.x
40.
Suzuki M. Experimental cerebral atherosclerosis in the dog. Am J Pathol. 1972;67:387–402
41.
Ratcliffe HL, Luginbühl H, Pivnik L. Coronary, aortic and cerebral atherosclerosis in swine of 3 age-groups: implications. Bull World Health Organ. 1970;42:225–234
42.
Imai H, Thomas WA. Cerebral atherosclerosis in swine: role of necrosis in progression of diet-induced lesions from proliferative to atheromatous stage. Exp Mol Pathol. 1968;8:330–357. doi: 10.1016/s0014-4800(68)80004-8
43.
Kawaguchi H, Miyoshi N, Miura N, Fujiki M, Horiuchi M, Izumi Y, Miyajima H, Nagata R, Misumi K, Takeuchi T, et al. Microminipig, a non-rodent experimental animal optimized for life science research: novel atherosclerosis model induced by high fat and cholesterol diet. J Pharmacol Sci. 2011;115:115–121. doi: 10.1254/jphs.10r17fm
44.
Nyström SHM. Electron microscopic studies on cholesterol-induced cerebral atherosclerosis in cockerels. Acta Neuropathol. 1963;3:48–56. doi: 10.1007/BF00684019
45.
Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177–185. doi: 10.1115/1.3138276
46.
Franke RP, Gräfe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature. 1984;307:648–649. doi: 10.1038/307648a0
47.
Blackman BR, Barbee KA, Thibault LE. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann Biomed Eng. 2000;28:363–372. doi: 10.1114/1.286
48.
Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, García-Cardeña G, Gimbrone MA. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA. 2004;101:14871–14876. doi: 10.1073/pnas.0406073101
49.
Go YM, Boo YC, Park H, Maland MC, Patel R, Kirkwood A, Pritchard J, Fujio Y, Walsh K, Darley-Usmar V, et al. Protein kinase B/Akt activates c-Jun NH2-terminal kinase by increasing NO production in response to shear stress. J Appl Physiol. 2001;91:1574. doi: 10.1152/jappl.2001.91.4.1574
50.
Chang K, Weiss D, Suo J, Vega JD, Giddens D, Taylor WR, Jo H. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries. Circulation. 2007;116:1258–1266. doi: 10.1161/CIRCULATIONAHA.106.683227
51.
Tressel SL, Huang RP, Tomsen N, Jo H. Laminar shear inhibits tubule formation and migration of endothelial cells by an angiopoietin-2–dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2150–2156. doi: 10.1161/ATVBAHA.107.150920
52.
Mowbray AL, Kang DH, Rhee SG, Kang SW, Jo H. Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J Biol Chem. 2008;283:1622–1627. doi: 10.1074/jbc.M707985200
53.
Platt MO, Ankeny RF, Shi GP, Weiss D, Vega JD, Taylor WR, Jo H. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol. 2007;292:H1479–H1486. doi: 10.1152/ajpheart.00954.2006
54.
Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227:1477–1479. doi: 10.1126/science.3883488
55.
Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 1985;107:341–347. doi: 10.1115/1.3138567
56.
Frangos JA, McIntire LV, Eskin SG. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng. 1988;32:1053–1060. doi: 10.1002/bit.260320812
57.
Lawrence M, McIntire L, Eskin S. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood. 1987;70:1284–1290. doi: 10.1182/blood.v70.5.1284.bloodjournal7051284
58.
Jo H, Dull RO, Hollis TM, Tarbell JM. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol Heart Circ Physiol. 1991;260:H1992–H1996. doi: 10.1152/ajpheart.1991.260.6.H1992
59.
Nackman GB, Fillinger MF, Shafritz R, Wei T, Graham AM. Flow modulates endothelial regulation of smooth muscle cell proliferation: a new model. Surgery. 1998;124:353–60; discussion 360.
60.
Rainger GE, Stone P, Morland CM, Nash GB. A novel system for investigating the ability of smooth muscle cells and fibroblasts to regulate adhesion of flowing leukocytes to endothelial cells. J Immunol Methods. 2001;255:73–82. doi: 10.1016/s0022-1759(01)00427-6
61.
Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW, Usami S, Chien S. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood. 2003;101:2667–2674. doi: 10.1182/blood-2002-08-2560
62.
Usami S, Chen HH, Zhao Y, Chien S, Skalak R. Design and construction of a linear shear stress flow chamber. Ann Biomed Eng. 1993;21:77–83. doi: 10.1007/BF02368167
63.
Tsou JK, Gower RM, Ting HJ, Schaff UY, Insana MF, Passerini AG, Simon SI. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation. 2008;15:311–323. doi: 10.1080/10739680701724359
64.
Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996;84:289–297. doi: 10.1016/s0092-8674(00)80983-6
65.
Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J Biomech Eng. 1995;117:203–210. doi: 10.1115/1.2796002
66.
Haidekker MA, White CR, Frangos JA. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step. J Biomech Eng. 2001;123:455–463. doi: 10.1115/1.1389460
67.
Schaff UY, Xing MMQ, Lin KK, Pan N, Li Jeon N, Simon SI. Vascular mimetics based on microfluidics for imaging the leukocyte–endothelial inflammatory response. Lab Chip. 2007;7:448–456. doi: 10.1039/b617915k
68.
Nam U, Kim S, Park J, Jeon JS. Lipopolysaccharide-induced vascular inflammation model on microfluidic chip. Micromachines. 2020;11:747. doi: 10.3390/mi11080747
69.
Gutierrez E, Petrich B G, Shattil S J, Ginsberg M H, Groisman A, Kasirer-Friede A. Microfluidic devices for studies of shear-dependent platelet adhesion. Lab Chip. 2008;8:1486–1495. doi: 10.1039/b804795b
70.
Shin Y, Lim S, Kim J, Jeon JS, Yoo H, Gweon B. Emulating endothelial dysfunction by implementing an early atherosclerotic microenvironment within a microfluidic chip. Lab Chip. 2019;19:3664–3677. doi: 10.1039/c9lc00352e
71.
Tkachenko E, Gutierrez E, Ginsberg MH, Groisman A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip. 2009;9:1085–1095. doi: 10.1039/b812184b
72.
Shao J, Wu L, Wu J, Zheng Y, Zhao H, Jin Q, Zhao J. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip. 2009;9:3118–3125. doi: 10.1039/b909312e
73.
Tovar-Lopez F, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Khoshmanesh K, Baratchi S. A microfluidic system for studying the effects of disturbed flow on endothelial cells. Front Bioeng Biotechnol. 2019;7:81. doi: 10.3389/fbioe.2019.00081
74.
Venugopal Menon N, Tay HM, Pang KT, Dalan R, Wong SC, Wang X, Li KHH, Hou HW. A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioeng. 2018;2:016103. doi: 10.1063/1.4993762
75.
Gu X, Xie S, Hong D, Ding Y. An in vitro model of foam cell formation induced by a stretchable microfluidic device. Sci Rep. 2019;9:7461. doi: 10.1038/s41598-019-43902-3
76.
Breithaupt JJ, Kwon J, Ettyreddy A, Zhang X, Gersbach C, Truskey GA. Abstract 13133: PCSK9 knockdown decreases inflammatory markers and u937 monocyte accumulation in a tissue-engineered blood vessel model. Circulation. 2019;140:A13133–A13133. 10.1161/circ.140.suppl_1.13133
77.
Salmon EE, Breithaupt JJ, Truskey GA. Application of oxidative stress to a tissue-engineered vascular aging model induces endothelial cell senescence and activation. Cells. 2020;9:1292. doi: 10.3390/cells9051292
78.
Chen Z, Tang M, Huang D, Jiang W, Li M, Ji H, Park J, Xu B, Atchison L J, Truskey G A, et al. Real-time observation of leukocyte–endothelium interactions in tissue-engineered blood vessel. Lab Chip. 2018;18:2047–2054. doi: 10.1039/c8lc00202a
79.
Robert J, Weber B, Frese L, Emmert MY, Schmidt D, Eckardstein A von, Rohrer L, Hoerstrup SP. A three-dimensional engineered artery model for in vitro atherosclerosis research. PLoS One. 2013;8:e79821. doi: 10.1371/journal.pone.0079821
80.
Zhang X, Bishawi M, Zhang G, Prasad V, Salmon E, Breithaupt JJ, Zhang Q, Truskey GA. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun. 2020;11:5426. doi: 10.1038/s41467-020-19197-8
81.
Lee JH, Chen Z, He S, Zhou JK, Tsai A, Truskey GA, Leong KW. Emulating early atherosclerosis in a vascular microphysiological system using branched tissue-engineered blood vessels. Adv Biol (Weinh). 2021;5:2000428. doi: 10.1002/adbi.202000428
82.
Gao G, Park W, Kim BS, Ahn M, Chae S, Cho WW, Kim J, Lee JY, Jang J, Cho DW. Construction of a novel in vitro atherosclerotic model from geometry-tunable artery equivalents engineered via in-bath coaxial cell printing. Adv Funct Mater. 2021;31:2008878. doi: 10.1002/adfm.202008878
83.
Hasan A, Paul A, Memic A, Khademhosseini A. A multilayered microfluidic blood vessel-like structure. Biomed Microdevices. 2015;17:88. doi: 10.1007/s10544-015-9993-2
84.
Jia L, Han F, Yang H, Turnbull G, Wang J, Clarke J, Shu W, Guo M, Li B. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications. Adv Healthc Mater. 2019;8:e1900435. doi: 10.1002/adhm.201900435
85.
Poussin C, Kramer B, Lanz HL, Heuvel A van den, Laurent A, Olivier T, Vermeer M, Peric D, Baumer K, Dulize R, et al. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow – application in systems toxicology. ALTEX. 2020;37:47–63. doi: 10.14573/altex.1811301
86.
Mallone A, Gericke C, Hosseini V, Chahbi K, Haenseler W, Emmert MY, von EA, Walther JH, Vogel V, Weber B, et al. Human induced pluripotent stem cell-derived vessels as dynamic atherosclerosis model on a chip. bioRxiv. 2020.11.27.401034. doi: 10.1101/2020.11.27.401034
87.
Chen R, Wang B, Liu Y, He J, Lin R, Li D. Gelatin-based perfusable, endothelial carotid artery model for the study of atherosclerosis. Biomed Eng Online. 2019;18:87. doi: 10.1186/s12938-019-0706-6
88.
Kaneko N, Satta S, Komuro Y, Muthukrishnan SD, Kakarla V, Guo L, An J, Elahi F, Kornblum HI, Liebeskind DS, et al. Flow-mediated susceptibility and molecular response of cerebral endothelia to SARS-CoV-2 infection. Stroke. 2021;52:260–270. doi: 10.1161/STROKEAHA.120.032764
89.
Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY. Animal models of atherosclerosis. Eur J Pharmacol. 2017;816:3–13. doi: 10.1016/j.ejphar.2017.05.010
90.
Yamamoto T, Bishop RW, Brown MS, Goldstein JL, Russell DW. Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986;232:1230–1237. doi: 10.1126/science.3010466
91.
McNally JS, de Havenon A, Kim SE, Wang C, Wang S, Zabriskie MS, Parker DL, Baradaran H, Alexander MD. Rabbit models of intracranial atherosclerotic disease for pathological validation of vessel wall MRI. Neuroradiol J. 2021;34:193–199. doi: 10.1177/1971400920980153
92.
Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49:344–356. doi: 10.1177/0300985811402846
93.
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–2042. doi: 10.1001/jama.282.21.2035
Information & Authors
Information
Published In
Copyright
© 2024 American Heart Association, Inc.
Versions
You are viewing the most recent version of this article.
History
Published online: 13 May 2024
Published in print: June 2024
Keywords
Subjects
Authors
Disclosures
Disclosures Dr Liebeskind is a consultant as Imaging Core Lab to Cerenovus, Genentech, Medtronic, Rapid Medical, and Stryker. The other authors report no conflicts.
Sources of Funding
This study was supported by multiple National Institutes of Health grants including R01NS123734 (to Drs Liebeskind and Hinman), R01NS112799 (to G. Prochilo, Dr Kaneko, Dr Liebeskind, and Dr Hinman), UG3NS130228 (to Dr Liebeskind), and R01NS121286 (to Dr Kaneko).
Metrics & Citations
Metrics
Citations
Download Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.
- Development and Validation of a Flow-Dependent Endothelialized 3D Model of Intracranial Atherosclerotic Disease, Translational Stroke Research, (2024).https://doi.org/10.1007/s12975-024-01310-4
Loading...
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginPurchase Options
Purchase this article to access the full text.
eLetters(0)
eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.
Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.