White Cell Telomere Length and Risk of Premature Myocardial Infarction
Abstract
Objective— Biological age may be distinct from chronological age and contribute to the pathogenesis of age-related diseases. Mean telomeres lengths provide an assessment of biological age with shorter telomeres, indicating increased biological age. We investigated whether subjects with premature myocardial infarction (MI) had shorter leukocyte telomeres.
Methods and Results— Mean terminal restriction fragment (TRF) length, a measure of average telomere size, was compared in leukocyte DNA of 203 cases with a premature MI (<50 years) and 180 controls. Age- and sex-adjusted mean TRF length of cases was significantly shorter than that of controls (difference 299.7±69.3 base pairs, P<0.0001) and on average equivalent to controls 11.3 years older. The difference in mean TRF length between cases and controls was not accounted for by other coronary risk factors. Compared with subjects in the highest quartile for telomere length, the risk of myocardial infarction was increased between 2.8- and 3.2-fold (P<0.0001) in subjects with shorter than average telomeres.
Conclusions— The findings support the concept that biological age may play a role in the etiology of coronary heart disease and have potentially important implications for our understanding of its genetic etiology, pathogenesis, and variable age of onset.
Footnotes
References
- 1 Blackburn EH. Structure and function of telomeres. Nature. 1991;350: 569–573.CrossrefMedlineGoogle Scholar
- 2 Zakian VA. Telomeres: beginning to understand the end. Science. 1995;270: 1601–1607.CrossrefMedlineGoogle Scholar
- 3 Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345: 458–460.CrossrefMedlineGoogle Scholar
- 4 Olovnikov AM. A theory of marginotomy. J Theor Biol. 1973;41: 181–190.CrossrefMedlineGoogle Scholar
- 5 Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89: 10114–10118.CrossrefMedlineGoogle Scholar
- 6 Vaziri H, Dragowska W, Allsopp R, Thomas T, Harley CB, Landsorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994;91: 9857–9860.CrossrefMedlineGoogle Scholar
- 7 Allsopp RC, Harley CB. Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res. 1995;219: 130–136.CrossrefMedlineGoogle Scholar
- 8 Samani NJ, Boultby R, Butler RB, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet. 2001;358: 472–473.CrossrefMedlineGoogle Scholar
- 9 Jeanclos E, Krolewski A, Skurnick J, Kimura M, Aviv H, Warram JH, Aviv A. Shortened telomere length in white blood cells of patients with IDDM. Diabetes. 1998;47: 482–486.CrossrefMedlineGoogle Scholar
- 10 Jeanclos E, Schork N, Kyvik KO, Kimura M, Skurnick JH, Aviv A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension. 2000;36: 195–200.CrossrefMedlineGoogle Scholar
- 11 Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, Labat C, Bean K, Aviv A. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001;37: 381–385.CrossrefMedlineGoogle Scholar
- 12 Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340: 115–126.CrossrefMedlineGoogle Scholar
- 13 Harrison D. Oxidative stress and coronary artery disease. Can J Cardiol. 1998;14 (suppl D): 30D–32D.MedlineGoogle Scholar
- 14 Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and risks of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336: 973–979.CrossrefMedlineGoogle Scholar
- 15 Packard CJ, O’Reilly DS, Caslake MJ, McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M, Wilkinson FE, Rumley A, Lowe GD. Lipoprotein-associated phospholipase A2, as an independent predictor of coronary heart disease. N Engl J Med. 2000;343: 1148–1155.CrossrefMedlineGoogle Scholar
- 16 von Zglinicki T. Role of oxidative stress in telomere regulation and replicative senescence. Ann N Y Acad Sci. 2000;908: 99–110.CrossrefMedlineGoogle Scholar
- 17 Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S. Homocysteine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med. 1999;131: 363–375.CrossrefMedlineGoogle Scholar
- 18 Xu D, Neville R, Finkel T. Homocysteine accelerates endothelial cell senescence. FEBS Lett. 2000;470: 20–24.CrossrefMedlineGoogle Scholar
- 19 Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55: 876–882.MedlineGoogle Scholar
- 20 Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330: 1041–1046.CrossrefMedlineGoogle Scholar
- 21 Samani NJ, Singh RK. What is known about the genetics of acute coronary syndromes. In: de Bono DP, Sobel E, eds. Current challenges in acute coronary syndromes. Oxford: Blackwell Science; 2001:81–98.Google Scholar
- 22 Davies MJ, Woolf N, Rowles PM, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J. 1988;60: 459–464.CrossrefMedlineGoogle Scholar
- 23 Burrig KF. The endothelium of advanced arteriosclerotic plaques in humans. Arterioscler Thromb. 1991;11: 1678–1689.CrossrefMedlineGoogle Scholar
- 24 Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105: 1541–1544.LinkGoogle Scholar
- 25 Comi P, Chiaramonte R, Maier JAM. Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res. 1995;219: 304–308.CrossrefMedlineGoogle Scholar
- 26 Lusis AJ. Atherosclerosis. Nature. 2000;407: 233–241.CrossrefMedlineGoogle Scholar
- 27 Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A. 1995;92: 11190–11194.CrossrefMedlineGoogle Scholar
- 28 Landsorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet. 1996;5: 685–691.CrossrefMedlineGoogle Scholar


