Skip to main content

Abstract

BACKGROUND:

Pathogenic variants in PLIN1-encoding PLIN1 (perilipin-1) are responsible for an autosomal dominant form of familial partial lipodystrophy (FPL) associated with severe insulin resistance, hepatic steatosis, and important hypertriglyceridemia. This study aims to decipher the mechanisms of hypertriglyceridemia associated with PLIN1-related FPL.

METHODS:

We performed an in vivo lipoprotein kinetic study in 6 affected patients compared with 13 healthy controls and 8 patients with type 2 diabetes. Glucose and lipid parameters, including plasma LPL (lipoprotein lipase) mass, were measured. LPL mRNA and protein expression were evaluated in abdominal subcutaneous adipose tissue from patients with 5 PLIN1-mutated FPL and 3 controls.

RESULTS:

Patients with PLIN1-mutated FPL presented with decreased fat mass, insulin resistance, and diabetes (glycated hemoglobin A1c, 6.68±0.70% versus 7.48±1.63% in patients with type 2 diabetes; mean±SD; P=0.27). Their plasma triglycerides were higher (5.96±3.08 mmol/L) than in controls (0.76±0.27 mmol/L; P<0.0001) and patients with type 2 diabetes (2.94±1.46 mmol/L, P=0.006). Compared with controls, patients with PLIN1-related FPL had a significant reduction of the indirect fractional catabolic rate of VLDL (very-low-density lipoprotein)-apoB100 toward IDL (intermediate-density lipoprotein)/LDL (low-density lipoprotein; 1.79±1.38 versus 5.34±2.45 pool/d; P=0.003) and the indirect fractional catabolic rate of IDL-apoB100 toward LDL (2.14±1.44 versus 7.51±4.07 pool/d; P=0.005). VLDL-apoB100 production was not different between patients with PLIN1-related FPL and controls. Compared with patients with type 2 diabetes, patients with PLIN1-related FPL also showed a significant reduction of the catabolism of both VLDL-apoB100 (P=0.031) and IDL-apoB100 (P=0.031). Plasma LPL mass was significantly lower in patients with PLIN1-related FPL than in controls (21.03±10.08 versus 55.76±13.10 ng/mL; P<0.0001), although the LPL protein expression in adipose tissue was similar. VLDL-apoB100 and IDL-apoB100 indirect fractional catabolic rates were negatively correlated with plasma triglycerides and positively correlated with LPL mass.

CONCLUSIONS:

We show that hypertriglyceridemia associated with PLIN1-related FPL results from a marked decrease in the catabolism of triglyceride-rich lipoproteins (VLDL and IDL). This could be due to a pronounced reduction in LPL availability, related to the decreased adipose tissue mass.

Graphical Abstract

Get full access to this article

View all available purchase options and get full access to this article.

Supplemental Material

File (atvb_atvb-2024-320774_supp1.docx)

REFERENCES

1.
Brasaemle DL, Subramanian V, Garcia A, Marcinkiewicz A, Rothenberg A. Perilipin A and the control of triacylglycerol metabolism. Mol Cell Biochem. 2009;326:15–21. doi: 10.1007/s11010-008-9998-8
2.
Jackson CL. Lipid droplet biogenesis. Curr Opin Cell Biol. 2019;59:88–96. doi: 10.1016/j.ceb.2019.03.018
3.
Gandotra S, Le Dour C, Bottomley W, Cervera P, Giral P, Reznik Y, Charpentier G, Auclair M, Delépine M, Barroso I, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364:740–748. doi: 10.1056/NEJMoa1007487
4.
Jéru I, Vantyghem MC, Bismuth E, Cervera P, Barraud S, Auclair M, Vatier C, Lascols O, Savage DB, Vigouroux C; PLIN1-Study Group. Diagnostic challenge in PLIN1-associated familial partial lipodystrophy. J Clin Endocrinol Metab. 2019;104:6025–6032. doi: 10.1210/jc.2019-00849
5.
Kozusko K, Tsang V, Bottomley W, Cho YH, Gandotra S, Mimmack ML, Lim K, Isaac I, Patel S, Saudek V, et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes. 2015;64:299–310. doi: 10.2337/db14-0104
6.
Chen RX, Zhang L, Ye W, Wen YB, Si N, Li H, Li MX, Li XM, Zheng K. The renal manifestations of type 4 familial partial lipodystrophy: a case report and review of literature. BMC Nephrol. 2018;19:111. doi: 10.1186/s12882-018-0913-6
7.
Vergès B, Pathophysiology of diabetic dyslipidaemia: where are we?. Diabetologia. 2015;58:886–899. doi: 10.1007/s00125-015-3525-8
8.
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–2223. doi: 10.1152/physrev.00063.2017
9.
Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: a paradigm for understanding the consequences of “overloading” adipose tissue. Physiol Rev. 2021;101:907–993. doi: 10.1152/physrev.00032.2020
10.
Duvillard L, Pont F, Florentin E, Galland-Jos C, Gambert P, Vergès B. Metabolic abnormalities of apolipoprotein B-containing lipoproteins in non-insulin-dependent diabetes: a stable isotope kinetic study. Eur J Clin Invest. 2000;308:685–694.
11.
Vergès B, Florentin E, Baillot-Rudoni S, Monier S, Petit JM, Rageot D, Gambert P, Duvillard L. Effects of 20 mg rosuvastatin on VLDL1-, VLDL2-, IDL- and LDL-ApoB kinetics in type 2 diabetes. Diabetologia. 2008;51:1382–1390. doi: 10.1007/s00125-008-1046-4
12.
Vergès B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, Petit JM, Degrace P, Demizieux L. Liraglutide increases the catabolism of apolipoprotein B100-containing lipoproteins in patients with type 2 diabetes and reduces proprotein convertase subtilisin/kexin type 9 expression. Diabetes Care. 2021;44:1027–1037. doi: 10.2337/dc20-1843
13.
Duvillard L, Dautin G, Florentin E, Petit JM, Gambert P, Vergès B. Changes in apolipoprotein B100-containing lipoprotein metabolism due to an estrogen plus progestin oral contraceptive: a stable isotope kinetic study. J Clin Endocrinol Metab. 2010;95:2140–2146. doi: 10.1210/jc.2009-2480
14.
Duvillard L, Pont F, Florentin E, Gambert P, Vergès B. Significant improvement of apolipoprotein B-containing lipoprotein metabolism by insulin treatment in patients with non-insulin-dependent diabetes mellitus. Diabetologia. 2000;43:27–35. doi: 10.1007/s001250050004
15.
Taskinen MR, Packard CJ, Shepherd J. Effect of insulin therapy on metabolic fate of apolipoprotein B-containing lipoproteins in NIDDM. Diabetes. 1990;39:1017–1027. doi: 10.2337/diab.39.9.1017
16.
Pont F, Duvillard L, Florentin E, Gambert P, Vergès B. Early kinetic abnormalities of apoB-containing lipoproteins in insulin-resistant women with abdominal obesity. Arterioscler Thromb Vasc Biol. 2002;22:1726–1732. doi: 10.1161/01.atv.0000032134.92180.41
17.
Millar JS, Lichtenstein AH, Cuchel M, Dolnikowski GG, Hachey DL, Cohn JS, Schaefer EJ. Impact of age on the metabolism of VLDL, IDL, and LDL apolipoprotein B-100 in men. J Lipid Res. 1995;36:1155–1167.
18.
Cummings MH, Watts GF, Pal C, Umpleby M, Hennessy TR, Naoumova R, Sönksen PH. Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in obesity: a stable isotope study. Clin Sci Lond Engl. 1979. 1995;88:225–233. doi: 10.1042/cs0880225
19.
Pont F, Duvillard L, Florentin E, Gambert P, Vergès B. High-density lipoprotein apolipoprotein A-I kinetics in obese insulin resistant patients. An in vivo stable isotope study. Int J Obes Relat Metab Disord. 2002;26:1151–1158. doi: 10.1038/sj.ijo.0802070
20.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883
21.
Adiels M, Taskinen MR, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Häkkinen A, Olofsson SO, Yki-Järvinen H, et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49:755–765. doi: 10.1007/s00125-005-0125-z
22.
Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One. 2012;7:e48852. doi: 10.1371/journal.pone.0048852
23.
Spiller S, Blüher M, Hoffmann R. Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes Metab. 2018;20:2661–2669. doi: 10.1111/dom.13449
24.
Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res. 2002;43:1997–2006. doi: 10.1194/jlr.r200015-jlr200
25.
Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009;297:E271–E288. doi: 10.1152/ajpendo.90920.2008
26.
Hegele RA. Monogenic dyslipidemias: window on determinants of plasma lipoprotein metabolism. Am J Hum Genet. 2001;69:1161–1177. doi: 10.1086/324647
27.
Hegele RA, Ginsberg HN, Chapman MJ, Nordestgaard BG, Kuivenhoven JA, Averna M, Borén J, Bruckert E, Catapano AL, Descamps OS, et al; European Atherosclerosis Society Consensus Panel. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2:655–666. doi: 10.1016/S2213-8587(13)70191-8
28.
Grundy SM, Vega GL. Fibric acids: effects on lipids and lipoprotein metabolism. Am J Med. 1987;83:9–20. doi: 10.1016/0002-9343(87)90866-7
29.
Jones A, Peers K, Wierzbicki AS, Ramachandran R, Mansfield M, Dawson C, Ochoa-Ferraro A, Soran H, Jenkinson F, McDowell I, et al. Long-term effects of volanesorsen on triglycerides and pancreatitis in patients with familial chylomicronaemia syndrome (FCS) in the UK Early Access to Medicines Scheme (EAMS). Atherosclerosis. 2023;375:67–74. doi: 10.1016/j.atherosclerosis.2023.05.008
30.
Lightbourne M, Startzell M, Bruce KD, Brite B, Muniyappa R, Skarulis M, Shamburek R, Gharib AM, Ouwerkerk R, Walter M, et al. Volanesorsen, an antisense oligonucleotide to apolipoprotein C-III, increases lipoprotein lipase activity and lowers triglycerides in partial lipodystrophy. J Clin Lipidol. 2022;16:850–862. doi: 10.1016/j.jacl.2022.06.011
31.
Fisher WR, Zech LA, Stacpoole PW. Apolipoprotein B metabolism in hypertriglyceridemic diabetic patients administered either a fish oil- or vegetable oil-enriched diet. J Lipid Res. 1998;39:388–401.
32.
Sanders TA, Sullivan DR, Reeve J, Thompson GR. Triglyceride-lowering effect of marine polyunsaturates in patients with hypertriglyceridemia. Arterioscler Dallas Tex. 1985;5:459–465. doi: 10.1161/01.atv.5.5.459
33.
Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis. 2017;16:149. doi: 10.1186/s12944-017-0541-3
34.
Klein RJ, Viana Rodriguez GM, Rotman Y, Brown RJ. Divergent pathways of liver fat accumulation, oxidation, and secretion in lipodystrophy versus obesity-associated NAFLD. Liver Int. 2023;43:2692–2700. doi: 10.1111/liv.15707

eLetters(0)

eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.

Information & Authors

Information

Published In

Go to Arteriosclerosis, Thrombosis, and Vascular Biology
Go to Arteriosclerosis, Thrombosis, and Vascular Biology
Arteriosclerosis, Thrombosis, and Vascular Biology
Pages: 1873 - 1883
PubMed: 38899472

Versions

You are viewing the most recent version of this article.

History

Received: 25 January 2024
Accepted: 3 June 2024
Published online: 20 June 2024
Published in print: August 2024

Permissions

Request permissions for this article.

Keywords

  1. kinetics
  2. lipodystrophy
  3. lipoprotein lipase
  4. perilipin-1
  5. triglycerides

Subjects

Authors

Affiliations

Department of Endocrinology, Diabetology and Metabolic Diseases (B.V., A.R.), University Hospital, Dijon, France.
University of Burgundy, INSERM (Institut national de la santé et de la recherche médicale) CTM (Centre de recherche Translationnelle en Médecine moléculaire) UMR1231, Dijon, France (B.V., L.D., A.R.).
Marie-Christine Vantyghem
Department of Endocrinology, Diabetology, and Metabolism, University of Lille, CHU (Centre Hospitalier Universitaire) Lille, France (M.C.V.).
Université Lille, U1190 Translational Research for Diabetes, INSERM, Institut Pasteur de Lille, France (M.C.V.).
Department of Endocrinology, University Hospital, Caen, France (Y.R.).
Laurence Duvillard
Department of Biochemistry (L.D.), University Hospital, Dijon, France.
University of Burgundy, INSERM (Institut national de la santé et de la recherche médicale) CTM (Centre de recherche Translationnelle en Médecine moléculaire) UMR1231, Dijon, France (B.V., L.D., A.R.).
Department of Endocrinology, Diabetology and Metabolic Diseases (B.V., A.R.), University Hospital, Dijon, France.
University of Burgundy, INSERM (Institut national de la santé et de la recherche médicale) CTM (Centre de recherche Translationnelle en Médecine moléculaire) UMR1231, Dijon, France (B.V., L.D., A.R.).
Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France (E.C., C.V.).
Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France (E.C., C.V.).
Department of Molecular Biology and Genetics (C.V.), Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, France.
Department of Endocrinology, Diabetology and Reproductive Endocrinology, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (C.V.), Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, France.

Notes

For Sources of Funding and Disclosures, see page 1882.
Supplemental Material is available at Supplemental Material.
Correspondence to: Professor Bruno Vergès, Service Endocrinologie, Diabétologie et Maladies Métaboliques, CHU-Dijon, 14 rue Gaffarel, 21000 Dijon, France. Email [email protected]

Disclosures

None.

Sources of Funding

E. Capel and C. Vigouroux are supported by institutional fundings from the Institut National de la Santé et de la Recherche Médicale (Inserm), Sorbonne Université, Assistance-Publique Hôpitaux de Paris, Fondation pour la Recherche Médicale (grant number EQU201903007868), and the French Ministry of Health and of Higher Education and Research (Plan National Maladies Rares 3), the French National Research Agency (ANR: Agence nationale pour la Recherche) under the program “Investissements d’Avenir” with reference ANR-11-LABX-0021 (LipSTIC Labex). C. Vigouroux is a member of the European Reference Network on Rare Endocrine Conditions—project ID no. 739527.

Metrics & Citations

Metrics

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

View Options

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

Purchase this article to access the full text.

Purchase access to this article for 24 hours

Hypertriglyceridemia Results From an Impaired Catabolism of Triglyceride-Rich Lipoproteins in PLIN1-Related Lipodystrophy
Arteriosclerosis, Thrombosis, and Vascular Biology
  • Vol. 44
  • No. 8

Purchase access to this journal for 24 hours

Arteriosclerosis, Thrombosis, and Vascular Biology
  • Vol. 44
  • No. 8
Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF and All Supplements

Download PDF and All Supplements

PDF/EPUB

View PDF/EPUB

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share

Comment Response