Skip to main content

Abstract

Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES

1.
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021. doi: 10.1016/j.jacc.2020.11.010
2.
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–e743. doi: 10.1161/CIR.0000000000000950
3.
Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24:494–515. doi: 10.1038/s41576-023-00580-2
4.
Molenaar B, Timmer LT, Droog M, Perini I, Versteeg D, Kooijman L, Monshouwer-Kloots J, de Ruiter H, Gladka MM, van Rooij E. Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair. Commun Biol. 2021;4:146. doi: 10.1038/s42003-020-01636-3
5.
Jin K, Gao S, Yang P, Guo R, Li D, Zhang Y, Lu X, Fan G, Fan X. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. Small Methods. 2022;6:e2100752. doi: 10.1002/smtd.202100752
6.
Tombor LS, John D, Glaser SF, Luxán G, Forte E, Furtado M, Rosenthal N, Baumgarten N, Schulz MH, Wittig J, et al. Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun. 2021;12:681. doi: 10.1038/s41467-021-20905-1
7.
Tyser RCV, Ibarra-Soria X, McDole K, Arcot Jayaram S, Godwin J, van den Brand TAH, Miranda AMA, Scialdone A, Keller PJ, Marioni JC, et al. Characterization of a common progenitor pool of the epicardium and myocardium. Science. 2021;371:eabb2986. doi: 10.1126/science.abb2986
8.
Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC, Akkad AD, Herndon CN, Arduini A, Papangeli I, et al. Transcriptional and cellular diversity of the human heart. Circulation. 2020;142:466–482. doi: 10.1161/CIRCULATIONAHA.119.045401
9.
Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, et al. Cells of the adult human heart. Nature. 2020;588:466–472. doi: 10.1038/s41586-020-2797-4
10.
Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, Patrick Pett J, Polanski K, Richardson L, Litvinukova M, et al. Spatially resolved multiomics of human cardiac niches. Nature. 2023;619:801–810. doi: 10.1038/s41586-023-06311-1
11.
Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, et al. Spatial multi-omic map of human myocardial infarction. Nature. 2022;608:766–777. doi: 10.1038/s41586-022-05060-x
12.
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–409. doi: 10.1161/CIRCRESAHA.115.307778
13.
Blackwood EA, Bilal AS, Azizi K, Sarakki A, Glembotski CC. Simultaneous isolation and culture of atrial myocytes, ventricular myocytes, and non-myocytes from an adult mouse heart. J Vis Exp. 2020. doi: 10.3791/61224
14.
Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H, Versteeg D, Lacraz GPA, Huibers MMH, van Oudenaarden A, van Rooij E. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation. 2018;138:166–180. doi: 10.1161/CIRCULATIONAHA.117.030742
15.
Constantinou C, Miranda AMA, Chaves P, Bellahcene M, Massaia A, Cheng K, Samari S, Rothery SM, Chandler AM, Schwarz RP, et al. Human pluripotent stem cell-derived cardiomyocytes as a target platform for paracrine protection by cardiac mesenchymal stromal cells. Sci Rep. 2020;10:13016. doi: 10.1038/s41598-020-69495-w
16.
Forte E, Daigle S, Rosenthal NA. Protocol for isolation of cardiac interstitial cells from adult murine hearts for unbiased single cell profiling. STAR Protoc. 2020;1:100077. doi: 10.1016/j.xpro.2020.100077
17.
Goldstein LD, Chen YJ, Dunne J, Mir A, Hubschle H, Guillory J, Yuan W, Zhang J, Stinson J, Jaiswal B, et al. Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics. 2017;18:519. doi: 10.1186/s12864-017-3893-1
18.
Yekelchyk M, Guenther S, Preussner J, Braun T. Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Res Cardiol. 2019;114:36. doi: 10.1007/s00395-019-0744-z
19.
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14:865–868. doi: 10.1038/nmeth.4380
20.
Nadelmann ER, Gorham JM, Reichart D, Delaughter DM, Wakimoto H, Lindberg EL, Litviňukova M, Maatz H, Curran JJ, Ischiu Gutierrez D, et al. Isolation of nuclei from mammalian cells and tissues for single-nucleus molecular profiling. Curr Protoc. 2021;1:e132. doi: 10.1002/cpz1.132
21.
Araten S, Mathieu R, Jetly A, Shin H, Hilal N, Zhang B, Morillo K, Nandan D, Sivankutty I, Chen MH, et al. High-quality nuclei isolation from postmortem human heart muscle tissues for single-cell studies. J Mol Cell Cardiol. 2023;179:7–17. doi: 10.1016/j.yjmcc.2023.03.010
22.
Vallejo AF, Harvey K, Wang T, Wise K, Butler LM, Polo J, Plummer J, Swarbrick A, Martelotto LG. snPATHO-seq: unlocking the FFPE archives for single nucleus RNA profiling. bioRxiv. Preprint posted online August 23, 2022. doi: 10.1101/2022.08.23.505054
23.
Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, Larsson AJM, Faridani OR, Sandberg R. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol. 2020;38:708–714. doi: 10.1038/s41587-020-0497-0
24.
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–1214. doi: 10.1016/j.cell.2015.05.002
25.
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–1201. doi: 10.1016/j.cell.2015.04.044
26.
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–59. doi: 10.1038/nature07517
27.
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239. doi: 10.1186/s13059-016-1103-0
28.
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–289. doi: 10.1016/j.gpb.2015.08.002
29.
Al’Khafaji AM, Smith JT, Garimella KV, Babadi M, Popic V, Sade-Feldman M, Gatzen M, Sarkizova S, Schwartz MA, Blaum EM, et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat Biotechnol. 2023;42:582–586. doi: 10.1038/s41587-023-01815-7
30.
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15:e8746. doi: 10.15252/msb.20188746
31.
Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, Lücken MD, Strobl DC, Henao J, Curion F, et al; Single-cell Best Practices Consortium. Best practices for single-cell analysis across modalities. Nat Rev Genet. 2023;24:550–572. doi: 10.1038/s41576-023-00586-w
32.
Janssen P, Kliesmete Z, Vieth B, Adiconis X, Simmons S, Marshall J, McCabe C, Heyn H, Levin JZ, Enard W, et al. The effect of background noise and its removal on the analysis of single-cell expression data. Genome Biol. 2023;24:140. doi: 10.1186/s13059-023-02978-x
33.
Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience. 2020;9:giaa151. doi: 10.1093/gigascience/giaa151
34.
Fleming SJ, Chaffin MD, Arduini A, Akkad AD, Banks E, Marioni JC, Philippakis AA, Ellinor PT, Babadi M. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat Methods. 2023;20:1323–1335. doi: 10.1038/s41592-023-01943-7
35.
Giladi A, Cohen M, Medaglia C, Baran Y, Li B, Zada M, Bost P, Blecher-Gonen R, Salame TM, Mayer JU, et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat Biotechnol. 2020;38:629–637. doi: 10.1038/s41587-020-0442-2
36.
Xi NM, Li JJ. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst. 2021;12:176–194.e6. doi: 10.1016/j.cels.2020.11.008
37.
Quijada P, Trembley MA, Misra A, Myers JA, Baker CD, Pérez-Hernández M, Myers JR, Dirkx RA, Cohen ED, Delmar M, et al. Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun. 2021;12:4155. doi: 10.1038/s41467-021-24414-z
38.
Polański K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park JE. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics. 2020;36:964–965. doi: 10.1093/bioinformatics/btz625
39.
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018;15:1053–1058. doi: 10.1038/s41592-018-0229-2
40.
Luecken MD, Büttner M, Chaichoompu K, Danese A, Interlandi M, Mueller MF, Strobl DC, Zappia L, Dugas M, Colomé-Tatché M, et al. Benchmarking atlas-level data integration in single-cell genomics. Nat Methods. 2022;19:41–50. doi: 10.1038/s41592-021-01336-8
41.
Song Y, Miao Z, Brazma A, Papatheodorou I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat Commun. 2023;14:6495. doi: 10.1038/s41467-023-41855-w
42.
Rosen Y, Brbić M, Roohani Y, Swanson K, Li Z, Leskovec J. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat Methods. 2024. In press.
43.
Kimmel JC, Kelley DR. Semisupervised adversarial neural networks for single-cell classification. Genome Res. 2021;31:1781–1793. doi: 10.1101/gr.268581.120
44.
Conde CD, Xu C, Jarvis LB, Rainbow DB, Wells SB, Gomes T, Howlett SK, Suchanek O, Polanski K, King HW, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science. 2022;376:eabl5197. doi: 10.1126/science.abl5197
45.
Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, Wärdell E, Custodio J, Reimegård J, Salmén F, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell. 2019;179:1647–1660.e19. doi: 10.1016/j.cell.2019.11.025
46.
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463–1467. doi: 10.1126/science.aaw1219
47.
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348:aaa6090. doi: 10.1126/science.aaa6090
48.
Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wählby C, Nilsson M. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods. 2013;10:857–860. doi: 10.1038/nmeth.2563
49.
Yue L, Liu F, Hu J, Yang P, Wang Y, Dong J, Shu W, Huang X, Wang S. A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Comput Struct Biotechnol J. 2023;21:940–955. doi: 10.1016/j.csbj.2023.01.016
50.
Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, Kuemmerle LB, Rybakov S, Ibarra IL, Holmberg O, Virshup I, et al. Squidpy: a scalable framework for spatial omics analysis. Nat Methods. 2022;19:171–178. doi: 10.1038/s41592-021-01358-2
51.
Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW, Li T, Elmentaite R, Lomakin A, Kedlian V, Gayoso A, et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol. 2022;40:661–671. doi: 10.1038/s41587-021-01139-4
52.
Kakimoto Y, Okada C, Kawabe N, Sasaki A, Tsukamoto H, Nagao R, Osawa M. Myocardial lipofuscin accumulation in ageing and sudden cardiac death. Sci Rep. 2019;9:3304. doi: 10.1038/s41598-019-40250-0
53.
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience. 2021;24:102387. doi: 10.1016/j.isci.2021.102387
54.
Kiessling P, Kuppe C. Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases. Genome Med. 2024;16:14. doi: 10.1186/s13073-024-01282-y
55.
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol. 2018;2:152–163. doi: 10.1038/s41559-017-0377-2
56.
Cacheiro P, Muñoz-Fuentes V, Murray SA, Dickinson ME, Bucan M, Nutter LMJ, Peterson KA, Haselimashhadi H, Flenniken AM, Morgan H, et al; Genomics England Research Consortium. Human and mouse essentiality screens as a resource for disease gene discovery. Nat Commun. 2020;11:655. doi: 10.1038/s41467-020-14284-2
57.
Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science. 2022;377:eabo1984. doi: 10.1126/science.abo1984
58.
Koenig AL, Shchukina I, Amrute J, Andhey PS, Zaitsev K, Lai L, Bajpai G, Bredemeyer A, Smith G, Jones C, et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res. 2022;1:263–280. doi: 10.1038/s44161-022-00028-6
59.
Chaffin M, Papangeli I, Simonson B, Akkad AD, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M, et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature. 2022;608:174–180. doi: 10.1038/s41586-022-04817-8
60.
Gladka MM. Single-cell RNA sequencing of the adult mammalian heart-state-of-the-art and future perspectives. Curr Heart Fail Rep. 2021;18:64–70. doi: 10.1007/s11897-021-00504-3
61.
Forte E, McLellan MA, Skelly DA, Rosenthal NA. Ex uno, plures-from one tissue to many cells: a review of single-cell transcriptomics in cardiovascular biology. Int J Mol Sci. 2021;22:2071. doi: 10.3390/ijms22042071
62.
Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 2020;17:457–473. doi: 10.1038/s41569-020-0359-y
63.
Nomura S, Satoh M, Fujita T, Higo T, Sumida T, Ko T, Yamaguchi T, Tobita T, Naito AT, Ito M, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun. 2018;9:4435. doi: 10.1038/s41467-018-06639-7
64.
Forte E, Skelly DA, Chen M, Daigle S, Morelli KA, Hon O, Philip VM, Costa MW, Rosenthal NA, Furtado MB. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. 2020;30:3149–3163.e6. doi: 10.1016/j.celrep.2020.02.008
65.
Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 2018;22:600–610. doi: 10.1016/j.celrep.2017.12.072
66.
Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882. doi: 10.7554/eLife.43882
67.
Gao J, Zheng Y, Li L, Lu M, Chen X, Wang Y, Li Y, Liu X, Gao Y, Mao Y, et al. Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol. 2021;19:e3001229. doi: 10.1371/journal.pbio.3001229
68.
Molina DK, DiMaio VJM. Normal organ weights in men: part I-the heart. Am J Forensic Med Pathol. 2012;33:362–367. doi: 10.1097/PAF.0b013e31823d298b
69.
Molina DK, DiMaio VJM. Normal organ weights in women: part I-the heart. Am J Forensic Med Pathol. 2015;36:176–181. doi: 10.1097/PAF.0000000000000174
70.
Wessels A, Sedmera D. Developmental anatomy of the heart: a tale of mice and man. Physiol Genomics. 2003;15:165–176. doi: 10.1152/physiolgenomics.00033.2003
71.
Doevendans PA, Daemen MJ, de Muinck ED, Smits JF. Cardiovascular phenotyping in mice. Cardiovasc Res. 1998;39:34–49. doi: 10.1016/s0008-6363(98)00073-x
72.
Feng HZ, Jin JP. A protocol to study ex vivo mouse working heart at human-like heart rate. J Mol Cell Cardiol. 2018;114:175–184. doi: 10.1016/j.yjmcc.2017.11.011
73.
Kaese S, Verheule S. Cardiac electrophysiology in mice: a matter of size. Front Physiol. 2012;3:345. doi: 10.3389/fphys.2012.00345
74.
Dobrev D, Wehrens XHT. Mouse models of cardiac arrhythmias. Circ Res. 2018;123:332–334. doi: 10.1161/CIRCRESAHA.118.313406
75.
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal models to study cardiac arrhythmias. Circ Res. 2022;130:1926–1964. doi: 10.1161/CIRCRESAHA.122.320258
76.
Rog-Zielinska EA, Kong CHT, Zgierski-Johnston CM, Verkade P, Mantell J, Cannell MB, Kohl P. Species differences in the morphology of transverse tubule openings in cardiomyocytes. Europace. 2018;20:iii120–iii124. doi: 10.1093/europace/euy245
77.
Derks W, Bergmann O. Polyploidy in cardiomyocytes: roadblock to heart regeneration? Circ Res. 2020;126:552–565. doi: 10.1161/CIRCRESAHA.119.315408
78.
Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161:1566–1575. doi: 10.1016/j.cell.2015.05.026
79.
Alkass K, Panula J, Westman M, Wu TD, Guerquin-Kern JL, Bergmann O. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell. 2015;163:1026–1036. doi: 10.1016/j.cell.2015.10.035
80.
Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA. 2013;110:1446–1451. doi: 10.1073/pnas.1214608110
81.
Zhou P, Pu WT. Recounting cardiac cellular composition. Circ Res. 2016;118:368–370. doi: 10.1161/CIRCRESAHA.116.308139
82.
Tang Y, Nyengaard JR, Andersen JB, Baandrup U, Gundersen HJG. The application of stereological methods for estimating structural parameters in the human heart. Anat Rec. 2009;292:1630–1647. doi: 10.1002/ar.20952
83.
Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios. 1980;28:41–61. PMID: 7428441
84.
Souders CA, Borg TK, Banerjee I, Baudino TA. Pressure overload induces early morphological changes in the heart. Am J Pathol. 2012;181:1226–1235. doi: 10.1016/j.ajpath.2012.06.015
85.
Vaillant F, Lauzier B, Poirier I, Gélinas R, Rivard ME, Robillard Frayne I, Thorin E, Des Rosiers C. Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am J Physiol Heart Circ Physiol. 2014;306:H78–H87. doi: 10.1152/ajpheart.00465.2013
86.
Opie, LH. Substrate and energy metabolism of the heart. In: Sperelakis, N, ed. Physiology and Pathophysiology of the Heart. Springer US; 1989:327–359.
87.
Kadkhodayan A, Coggan AR, Peterson LR. A “PET” area of interest: myocardial metabolism in human systolic heart failure. Heart Fail Rev. 2013;18:567–574. doi: 10.1007/s10741-012-9360-9
88.
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, et al; American Heart Association Council on Basic Cardiovascular Sciences. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016;118:1659–1701. doi: 10.1161/RES.0000000000000097
89.
Montessuit C, Lerch R. Regulation and dysregulation of glucose transport in cardiomyocytes. Biochim Biophys Acta. 2013;1833:848–856. doi: 10.1016/j.bbamcr.2012.08.009
90.
Vluggens A, Andreoletti P, Viswakarma N, Jia Y, Matsumoto K, Kulik W, Khan M, Huang J, Guo D, Yu S, et al. Functional significance of the two ACOX1 isoforms and their crosstalks with PPARα and RXRα. Lab Invest. 2010;90:696–708. doi: 10.1038/labinvest.2010.46
91.
Zidar N, Dolenc-Strazar Z, Jeruc J, Jerse M, Balazic J, Gartner U, Jermol U, Zupanc T, Stajer D. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the normal human heart and in myocardial infarction. Cardiovasc Pathol. 2007;16:300–304. doi: 10.1016/j.carpath.2007.02.005
92.
van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S, Sandmann CL, et al. The translational landscape of the human heart. Cell. 2019;178:242–260.e29. doi: 10.1016/j.cell.2019.05.010
93.
Salimova E, Nowak KJ, Estrada AC, Furtado MB, McNamara E, Nguyen Q, Balmer L, Preuss C, Holmes JW, Ramialison M, et al. Variable outcomes of human heart attack recapitulated in genetically diverse mice. NPJ Regen Med. 2019;4:5. doi: 10.1038/s41536-019-0067-6
94.
Barnabei MS, Palpant NJ, Metzger JM. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiol Genomics. 2010;42A:103–113. doi: 10.1152/physiolgenomics.00071.2010
95.
Moreth K, Fischer R, Fuchs H, Gailus-Durner V, Wurst W, Katus HA, Bekeredjian R, Hrabě de Angelis M. High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. J Comp Physiol B. 2014;184:763–775. doi: 10.1007/s00360-014-0830-3
96.
Kiper C, Grimes B, Van Zant G, Satin J. Mouse strain determines cardiac growth potential. PLoS One. 2013;8:e70512. doi: 10.1371/journal.pone.0070512
97.
Heron C, Dumesnil A, Houssari M, Renet S, Lemarcis T, Lebon A, Godefroy D, Schapman D, Henri O, Riou G, et al. Regulation and impact of cardiac lymphangiogenesis in pressure-overload-induced heart failure. Cardiovasc Res. 2023;119:492–505. doi: 10.1093/cvr/cvac086
98.
Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8:162–175. doi: 10.1038/nprot.2012.150
99.
Iyer D, Gambardella L, Bernard WG, Serrano F, Mascetti VL, Pedersen RA, Talasila A, Sinha S. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development. 2015;142:1528–1541. doi: 10.1242/dev.119271
100.
Liu CZ, Prasad A, Jadhav B, Liu Y, Gu M, Sharp AJ, Gelb BD. Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells. iScience. 2024;27:108599. doi: 10.1016/j.isci.2023.108599
101.
Sahara M. Recent advances in generation of in vitro cardiac organoids. Int J Mol Sci. 2023;24:6244. doi: 10.3390/ijms24076244
102.
Martin M, Gähwiler EKN, Generali M, Hoerstrup SP, Emmert MY. Advances in 3D organoid models for stem cell-based cardiac regeneration. Int J Mol Sci. 2023;24:5188. doi: 10.3390/ijms24065188
103.
Ghahremani S, Kanwal A, Pettinato A, Ladha F, Legere N, Thakar K, Zhu Y, Tjong H, Wilderman A, Stump WT, et al. CRISPR activation reverses haploinsufficiency and functional deficits caused by TTN truncation variants. Circulation. 2024;149:1285–1297. doi: 10.1161/CIRCULATIONAHA.123.063972
104.
Ahmed RE, Anzai T, Chanthra N, Uosaki H. A brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Front Cell Dev Biol. 2020;8:178. doi: 10.3389/fcell.2020.00178
105.
Noël, ES. Chapter Four - Cardiac construction—recent advances in morphological and transcriptional modeling of early heart development. In: Dubois, N, ed. Current Topics in Developmental Biology. Academic Press; 2024;156:121–156.
106.
Swanzey E, O’Connor C, Reinholdt LG. Mouse genetic reference populations: cellular platforms for integrative systems genetics. Trends Genet. 2021;37:251–265. doi: 10.1016/j.tig.2020.09.007
107.
Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 2016;167:1853–1866.e17. doi: 10.1016/j.cell.2016.11.038
108.
Gupta RM, Schnitzler GR, Fang S, Lee-Kim VS, Barry A. Multiomic analysis and CRISPR perturbation screens identify endothelial cell programs and novel therapeutic targets for coronary artery disease. Arterioscler Thromb Vasc Biol. 2023;43:600–608. doi: 10.1161/ATVBAHA.123.318328
109.
Kanemaru K, Cranley J, Muraro D, Miranda AMA, Pett JP, Litvinukova M, Kumasaka N, Ho SY, Polanski K, Richardson L, et al. Spatially resolved multiomics of human cardiac niches. bioRxiv. Preprint posted online January 30, 2023. doi: 10.1101/2023.01.30.526202
110.
Feng W, Bais A, He H, Rios C, Jiang S, Xu J, Chang C, Kostka D, Li G. Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun. 2022;13:7960. doi: 10.1038/s41467-022-35691-7
111.
Ren H, Zhou X, Yang J, Kou K, Chen T, Pu Z, Ye K, Fan X, Zhang D, Kang X, et al. Single-cell RNA sequencing of murine hearts for studying the development of the cardiac conduction system. Sci Data. 2023;10:577. doi: 10.1038/s41597-023-02333-6
112.
Shen J, Ma L, Hu J, Li Y. Single-cell atlas of neonatal mouse hearts reveals an unexpected cardiomyocyte. J Am Heart Assoc. 2023;12:e028287. doi: 10.1161/JAHA.122.028287
113.
Wang Y, Yao F, Wang L, Li Z, Ren Z, Li D, Zhang M, Han L, Wang SQ, Zhou B, et al. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat Commun. 2020;11:2585. doi: 10.1038/s41467-020-16204-w
114.
Wu L, Li YF, Shen JW, Zhu Q, Jiang J, Ma SH, He K, Ning ZP, Li J, Li XM. Single-cell RNA sequencing of mouse left ventricle reveals cellular diversity and intercommunication. Physiol Genomics. 2022;54:11–21. doi: 10.1152/physiolgenomics.00016.2021
115.
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol. 2023;20:289–308. doi: 10.1038/s41569-022-00805-7
116.
Burrows MT. Rhythmical activity of isolated heart muscle cells in vitro. Science. 1912;36:90–92. doi: 10.1126/science.36.916.90
117.
Cavanaugh MW. Pulsation, migration and division in dissociated chick embryo heart cells in vitro. J Exp Zool. 1955;128:573–589. doi: 10.1002/jez.1401280312
118.
Harary I, Farley B. In vitro studies of single isolated beating heart cells. Science. 1960;131:1674–1675. doi: 10.1126/science.131.3414.1674
119.
Mitcheson JS, Hancox JC, Levi AJ. Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc Res. 1998;39:280–300. doi: 10.1016/s0008-6363(98)00128-x
120.
Ng SY, Wong CK, Tsang SY. Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol. 2010;299:C1234–C1249. doi: 10.1152/ajpcell.00402.2009
121.
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochim Biophys Acta. 2016;1863:1882–1893. doi: 10.1016/j.bbamcr.2015.11.025
122.
Sylvén C, Wärdell E, Månsson-Broberg A, Cingolani E, Ampatzis K, Larsson L, Björklund A, Giacomello S. High cardiomyocyte diversity in human early prenatal heart development. iScience. 2023;26:105857. doi: 10.1016/j.isci.2022.105857
123.
Furtado MB, Costa MW, Rosenthal NA. The cardiac fibroblast: origin, identity and role in homeostasis and disease. Differentiation. 2016;92:93–101. doi: 10.1016/j.diff.2016.06.004
124.
Burstein B, Libby E, Calderone A, Nattel S. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation. 2008;117:1630–1641. doi: 10.1161/CIRCULATIONAHA.107.748053
125.
Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol. 2020;82:63–78. doi: 10.1146/annurev-physiol-021119-034527
126.
Haniffa MA, Collin MP, Buckley CD, Dazzi F. Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica. 2009;94:258–263. doi: 10.3324/haematol.13699
127.
Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A, Harvey RP, et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res. 2014;114:1422–1434. doi: 10.1161/CIRCRESAHA.114.302530
128.
Saadat S, Noureddini M, Mahjoubin-Tehran M, Nazemi S, Shojaie L, Aschner M, Maleki B, Abbasi-Kolli M, Rajabi Moghadam H, Alani B, et al. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players. Front Cardiovasc Med. 2020;7:588347. doi: 10.3389/fcvm.2020.588347
129.
Liu N, Xie L, Xiao P, Chen X, Kong W, Lou Q, Chen F, Lu X. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury. Mol Cell Biochem. 2022;477:1249–1260. doi: 10.1007/s11010-021-04343-7
130.
Valkov N, King ME, Moeller J, Liu H, Li X, Zhang P. MicroRNA-1-mediated inhibition of cardiac fibroblast proliferation through targeting cyclin D2 and CDK6. Front Cardiovasc Med. 2019;6:65. doi: 10.3389/fcvm.2019.00065
131.
McLellan MA, Skelly DA, Dona MSI, Squiers GT, Farrugia GE, Gaynor TL, Cohen CD, Pandey R, Diep H, Vinh A, et al. High-resolution transcriptomic profiling of the heart during chronic stress reveals cellular drivers of cardiac fibrosis and hypertrophy. Circulation. 2020;142:1448–1463. doi: 10.1161/CIRCULATIONAHA.119.045115
132.
Hastings JF, Skhinas JN, Fey D, Croucher DR, Cox TR. The extracellular matrix as a key regulator of intracellular signalling networks. Br J Pharmacol. 2019;176:82–92. doi: 10.1111/bph.14195
133.
Frangogiannis NG. The extracellular matrix in ischemic and nonischemic heart failure. Circ Res. 2019;125:117–146. doi: 10.1161/CIRCRESAHA.119.311148
134.
Kennedy-Lydon T. Immune functions and properties of resident cells in the heart and cardiovascular system: pericytes. Adv Exp Med Biol. 2017;1003:93–103. doi: 10.1007/978-3-319-57613-8_5
135.
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, et al. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep. 2023;42:113380. doi: 10.1016/j.celrep.2023.113380
136.
Haschak M, LoPresti S, Stahl E, Dash S, Popovich B, Brown BN. Macrophage phenotype and function are dependent upon the composition and biomechanics of the local cardiac tissue microenvironment. Aging (Milano). 2021;13:16938–16956. doi: 10.18632/aging.203054
137.
Zernecke A, Erhard F, Weinberger T, Schulz C, Ley K, Saliba AE, Cochain C. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc Res. 2023;119:1676–1689. doi: 10.1093/cvr/cvac161
138.
Rizzo G, Gropper J, Piollet M, Vafadarnejad E, Rizakou A, Bandi SR, Arampatzi P, Krammer T, DiFabion N, Dietrich O, et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction. Cardiovasc Res. 2023;119:772–785. doi: 10.1093/cvr/cvac113
139.
Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, Carriero R, Termanini A, Colombo FS, Jachetti E, et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation. 2019;140:2089–2107. doi: 10.1161/CIRCULATIONAHA.119.041694
140.
Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L, Chen X, Yang PC, Zhang Y, Li M, et al. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation. 2020;142:384–400. doi: 10.1161/CIRCULATIONAHA.119.043545
141.
Bermea KC, Kostelecky N, Rousseau ST, Lin CY, Adamo L. The human myocardium harbors a population of naive B-cells with a distinctive gene expression signature conserved across species. Front Immunol. 2022;13:973211. doi: 10.3389/fimmu.2022.973211
142.
Yang W, Lin J, Zhou J, Zheng Y, Jiang S, He S, Li D. Innate lymphoid cells and myocardial infarction. Front Immunol. 2021;12:758272. doi: 10.3389/fimmu.2021.758272
143.
Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a box: understanding cardiomyocyte, fibroblast, and innate immune cell interactions to orchestrate cardiac repair processes. Front Cardiovasc Med. 2019;6:32. doi: 10.3389/fcvm.2019.00032
144.
Certo M, Elkafrawy H, Pucino V, Cucchi D, Cheung KCP, Mauro C. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol. 2021;178:2041–2059. doi: 10.1111/bph.15002
145.
Forte E, Perkins B, Sintou A, Kalkat HS, Papanikolaou A, Jenkins C, Alsubaie M, Chowdhury RA, Duffy TM, Skelly DA, et al. Cross-priming dendritic cells exacerbate immunopathology after ischemic tissue damage in the heart. Circulation. 2021;143:821–836. doi: 10.1161/CIRCULATIONAHA.120.044581
146.
Sattler S, Fairchild P, Watt FM, Rosenthal N, Harding SE. The adaptive immune response to cardiac injury-the true roadblock to effective regenerative therapies? NPJ Regen Med. 2017;2:19. doi: 10.1038/s41536-017-0022-3
147.
Sattler S. Is ischaemic heart failure an autoimmune disease? ESC Heart Fail. 2023;11:611–614. doi: 10.1002/ehf2.14636
148.
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet. 2024;10:857-860. doi: 10.1038/s41576-023-00685-8
149.
Kalyanasundaram A, Li N, Augostini RS, Weiss R, Hummel JD, Fedorov VV. Three-dimensional functional anatomy of the human sinoatrial node for epicardial and endocardial mapping and ablation. Heart Rhythm. 2023;20:122–133. doi: 10.1016/j.hrthm.2022.08.039
150.
Wen Y, Li B. Morphology of mouse sinoatrial node and its expression of NF-160 and HCN4. Int J Clin Exp Med. 2015;8:13383–13387. PMID: 26550270
151.
Goodyer WR, Beyersdorf BM, Paik DT, Tian L, Li G, Buikema JW, Chirikian O, Choi S, Venkatraman S, Adams EL, et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ Res. 2019;125:379–397. doi: 10.1161/CIRCRESAHA.118.314578
152.
Liang D, Xue J, Geng L, Zhou L, Lv B, Zeng Q, Xiong K, Zhou H, Xie D, Zhang F, et al. Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing. Nat Commun. 2021;12:287. doi: 10.1038/s41467-020-20448-x
153.
van Eif VWW, Devalla HD, Boink GJJ, Christoffels VM. Transcriptional regulation of the cardiac conduction system. Nat Rev Cardiol. 2018;15:617–630. doi: 10.1038/s41569-018-0031-y
154.
Donald L, Lakatta EG. What makes the sinoatrial node tick? A question not for the faint of heart. Philos Trans R Soc Lond B Biol Sci. 2023;378:20220180. doi: 10.1098/rstb.2022.0180
155.
De Giusti VC, Villa-Abrille MC, Aiello EA. Interaction of pacemaker cells and fibroblasts in the SAN. Another way of setting the “Clocks”? Circ Res. 2022;131:21–23. doi: 10.1161/CIRCRESAHA.122.321336
156.
Zandstra TE, Notenboom RGE, Wink J, Kiès P, Vliegen HW, Egorova AD, Schalij MJ, De Ruiter MC, Jongbloed MRM. Asymmetry and heterogeneity: part and parcel in cardiac autonomic innervation and function. Front Physiol. 2021;12:665298. doi: 10.3389/fphys.2021.665298
157.
Bychkov R, Juhaszova M, Calvo-Rubio Barrera M, Donald LAH, Coletta C, Shumaker C, Moorman K, Sirenko ST, Maltsev AV, Sollott SJ, et al. The heart’s pacemaker mimics brain cytoarchitecture and function: novel interstitial cells expose complexity of the SAN. JACC Clin Electrophysiol. 2022;8:1191–1215. doi: 10.1016/j.jacep.2022.07.003
158.
Kikel-Coury NL, Brandt JP, Correia IA, O'Dea MR, DeSantis DF, Sterling F, Vaughan K, Ozcebe G, Zorlutuna P, Smith CJ. Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function. PLoS Biol. 2021;19:e3001444. doi: 10.1371/journal.pbio.3001444
159.
Linscheid N, Logantha SJRJ, Poulsen PC, Zhang S, Schrölkamp M, Egerod KL, Thompson JJ, Kitmitto A, Galli G, Humphries MJ, et al. Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun. 2019;10:2889. doi: 10.1038/s41467-019-10709-9
160.
Sun YH, Kao HKJ, Thai PN, Smithers R, Chang CW, Pretto D, Yechikov S, Oppenheimer S, Bedolla A, Chalker BA, et al. The sinoatrial node extracellular matrix promotes pacemaker phenotype and protects automaticity in engineered heart tissues from cyclic strain. Cell Rep. 2023;42:113505. doi: 10.1016/j.celrep.2023.113505
161.
Carmona R, Guadix JA, Cano E, Ruiz-Villalba A, Portillo-Sánchez V, Pérez-Pomares JM, Muñoz-Chápuli R. The embryonic epicardium: an essential element of cardiac development. J Cell Mol Med. 2010;14:2066–2072. doi: 10.1111/j.1582-4934.2010.01088.x
162.
Quijada P, Trembley MA, Small EM. The role of the epicardium during heart development and repair. Circ Res. 2020;126:377–394. doi: 10.1161/CIRCRESAHA.119.315857
163.
Knight-Schrijver VR, Davaapil H, Bayraktar S, Ross ADB, Kanemaru K, Cranley J, Dabrowska M, Patel M, Polanski K, He X, et al. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. Nat Cardiovasc Res. 2022;1:1215–1229. doi: 10.1038/s44161-022-00183-w
164.
Cao J, Poss KD. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018;15:631–647. doi: 10.1038/s41569-018-0046-4
165.
Suryawanshi H, Clancy R, Morozov P, Halushka MK, Buyon JP, Tuschl T. Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block. Cardiovasc Res. 2020;116:1446–1457. doi: 10.1093/cvr/cvz257
166.
Hesse J, Owenier C, Lautwein T, Zalfen R, Weber JF, Ding Z, Alter C, Lang A, Grandoch M, Gerdes N, et al. Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts within the infarcted murine heart. Elife. 2021;10:e65921. doi: 10.7554/eLife.65921
167.
Streef TJ, Smits AM. Epicardial contribution to the developing and injured heart: exploring the cellular composition of the epicardium. Front Cardiovasc Med. 2021;8:750243. doi: 10.3389/fcvm.2021.750243
168.
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15:1484–1506. doi: 10.1038/s41596-020-0292-x
169.
Cavallero S, Shen H, Yi C, Lien CL, Kumar SR, Sucov HM. CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev Cell. 2015;33:469–477. doi: 10.1016/j.devcel.2015.03.018
170.
Aghajanian H, Cho YK, Manderfield LJ, Herling MR, Gupta M, Ho VC, Li L, Degenhardt K, Aharonov A, Tzahor E, et al. Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat Commun. 2016;7:12038. doi: 10.1038/ncomms12038
171.
Li S, Huang L, Sun Y, Bai Y, Yang F, Yu W, Li F, Zhang Q, Wang B, Geng JG, et al. Slit2 promotes angiogenic activity via the Robo1-VEGFR2-ERK1/2 pathway in both in vivo and in vitro studies. Invest Ophthalmol Vis Sci. 2015;56:5210–5217. doi: 10.1167/iovs-14-16184
172.
Brakenhielm E, Alitalo K. Cardiac lymphatics in health and disease. Nat Rev Cardiol. 2019;16:56–68. doi: 10.1038/s41569-018-0087-8
173.
Travisano SI, Harrison MRM, Thornton ME, Grubbs BH, Quertermous T, Lien CL. Single-nuclei multiomic analyses identify human cardiac lymphatic endothelial cells associated with coronary arteries in the epicardium. Cell Rep. 2023;42:113106. doi: 10.1016/j.celrep.2023.113106
174.
McCracken IR, Dobie R, Bennett M, Passi R, Beqqali A, Henderson NC, Mountford JC, Riley PR, Ponting CP, Smart N, et al. Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression. Cardiovasc Res. 2022;118:2960–2972. doi: 10.1093/cvr/cvac023
175.
Vaahtomeri K, Moussion C, Hauschild R, Sixt M. Shape and function of interstitial chemokine CCL21 gradients are independent of heparan sulfates produced by lymphatic endothelium. Front Immunol. 2021;12:630002. doi: 10.3389/fimmu.2021.630002
176.
Han L, Zhang L. CCL21/CCR7 axis as a therapeutic target for autoimmune diseases. Int Immunopharmacol. 2023;121:110431. doi: 10.1016/j.intimp.2023.110431
177.
Cui M, Wang Z, Chen K, Shah AM, Tan W, Duan L, Sanchez-Ortiz E, Li H, Xu L, Liu N, et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell. 2020;53:102–116.e8. doi: 10.1016/j.devcel.2020.02.019
178.
Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, Li VSW, van den Born M, Gunst QD, Versteeg D, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci USA. 2018;115:E12245–E12254. doi: 10.1073/pnas.1805829115
179.
Peisker F, Halder M, Nagai J, Ziegler S, Kaesler N, Hoeft K, Li R, Bindels EMJ, Kuppe C, Moellmann J, et al. Mapping the cardiac vascular niche in heart failure. Nat Commun. 2022;13:3027. doi: 10.1038/s41467-022-30682-0
180.
Rao M, Wang X, Guo G, Wang L, Chen S, Yin P, Chen K, Chen L, Zhang Z, Chen X, et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol. 2021;116:55. doi: 10.1007/s00395-021-00897-1
181.
Amrute JM, Luo X, Penna V, Bredemeyer A, Yamawaki T, Heo GS, Shi S, Koenig A, Yang S, Kadyrov F, et al. Targeting the immune-fibrosis axis in myocardial infarction and heart failure. bioRxiv. Preprint posted online October 17, 2022. doi: 10.1101/2022.10.17.512579
182.
Alexanian M, Padmanabhan A, Nishino T, Travers JG, Ye L, Lee CY, Sadagopan N, Huang Y, Pelonero A, Auclair K, et al. Chromatin remodeling drives immune-fibroblast crosstalk in heart failure pathogenesis. bioRxiv. Preprint posted online January 6, 2023. doi: 10.1101/2023.01.06.522937
183.
Rieckmann M, Delgobo M, Gaal C, Büchner L, Steinau P, Reshef D, Gil-Cruz C, Horst ENT, Kircher M, Reiter T, et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest. 2019;129:4922–4936. doi: 10.1172/JCI123859
184.
Delgobo M, Weiß E, Ashour DED, Richter L, Popiolkowski L, Arampatzi P, Stangl V, Arias-Loza P, Mariotti-Ferrandiz E, Rainer PP, et al. Myocardial milieu favors local differentiation of regulatory T cells. Circ Res. 2023;132:565–582. doi: 10.1161/CIRCRESAHA.122.322183
185.
Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–250. doi: 10.1038/s41586-018-0824-5
186.
Heinrichs M, Ashour DED, Siegel J, Büchner L, Wedekind G, Heinze KG, Arampatzi P, Saliba AE, Cochain C, Hofmann U, et al. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc Res. 2021;117:2664–2676. doi: 10.1093/cvr/cvab181
187.
Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562:367–372. doi: 10.1038/s41586-018-0590-4
188.
Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, Salzman J, Yosef N, Bulthaup B, Brown P, Harper W, et al; Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science. 2022;376:eabl4896. doi: 10.1126/science.abl4896
189.
Hu JR, Abdullah A, Nanna MG, Soufer R. The brain-heart axis: neuroinflammatory interactions in cardiovascular disease. Curr Cardiol Rep. 2023;25:1745–1758. doi: 10.1007/s11886-023-01990-8
190.
Glorieux G, Nigam SK, Vanholder R, Verbeke F. Role of the microbiome in gut-heart-kidney cross talk. Circ Res. 2023;132:1064–1083. doi: 10.1161/CIRCRESAHA.123.321763
191.
Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. Microsyst Nanoeng. 2022;8:26. doi: 10.1038/s41378-021-00344-0
192.
Drakhlis L, Zweigerdt R. Heart in a dish - choosing the right in vitro model. Dis Model Mech. 2023;16:dmm049961. doi: 10.1242/dmm.049961
193.
Jurrjens AW, Seldin MM, Giles C, Meikle PJ, Drew BG, Calkin AC. The potential of integrating human and mouse discovery platforms to advance our understanding of cardiometabolic diseases. Elife. 2023;12:e86139. doi: 10.7554/eLife.86139
194.
Doll S, Dreßen M, Geyer PE, Itzhak DN, Braun C, Doppler SA, Meier F, Deutsch MA, Lahm H, Lange R, et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat Commun. 2017;8:1469. doi: 10.1038/s41467-017-01747-2
195.
Yanai I, Korbel JO, Boue S, McWeeney SK, Bork P, Lercher MJ. Similar gene expression profiles do not imply similar tissue functions. Trends Genet. 2006;22:132–138. doi: 10.1016/j.tig.2006.01.006
196.
Wu Y, Liu Q, Xie L. Hierarchical multi-omics data integration and modeling predict cell-specific chemical proteomics and drug responses. Cell Rep Methods. 2023;3:100452. doi: 10.1016/j.crmeth.2023.100452
197.
Wang J, Ma Z, Carr SA, Mertins P, Zhang H, Zhang Z, Chan DW, Ellis MJC, Townsend RR, Smith RD, et al. Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol Cell Proteomics. 2017;16:121–134. doi: 10.1074/mcp.M116.060301

eLetters(0)

eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.

Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.

Information & Authors

Information

Published In

Go to Circulation Research
Go to Circulation Research
Circulation Research
Pages: 1681 - 1702
PubMed: 38843288

History

Received: 5 February 2024
Revision received: 16 April 2024
Accepted: 24 April 2024
Published online: 6 June 2024
Published in print: 7 June 2024

Permissions

Request permissions for this article.

Keywords

  1. cardiovascular diseases
  2. genomics
  3. heart
  4. human
  5. single-cell analysis
  6. spatial analysis

Subjects

Authors

Affiliations

Jack A. Palmer
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.).
Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom.
Nadia Rosenthal
The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.).
National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.).
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.).
Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom.
Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom.
University Hospital Würzburg, Germany (M.L.).
Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.).
Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.).

Notes

For Sources of Funding and Disclosures, see page 1697.
Correspondence to: Monika Litvinukova, PhD, University Hospital Würzburg, Institute of Systems Immunology, Versbacher Str. 9, 97078 Würzburg, Germany. Email [email protected]

Disclosures

Disclosures S.A. Teichmann has consulted for or been a member of scientific advisory boards at Qiagen, Sanofi, GlaxoSmithKline, ForeSite Labs, Genentech, Biogen, and Roche. She is a consultant and equity holder for TransitionBio and EnsoCell. She is employed part-time by GlaxoSmithKline. The other authors report no conflicts.

Funding Information

Deutsche Forschungsgemeinschaft (DE)501100001659: 453989101
Wellcome Trust (GB)100010269: WT206194
J.A. Palmer is funded by the British Heart Foundation (4-year PhD Studentship) and the Wellcome Trust. N. Rosenthal is funded by the Leducq Foundation. M. Litvinukova is funded by CRC1525 by Deutsche Forschungsgemeinschaft (DGF) (453989101). S.A. Teichmann is funded by the Wellcome Trust (WT206194).

Metrics & Citations

Metrics

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

  1. Interface Between Cardioimmunology, Myocardial Health, and Disease: A Compendium, Circulation Research, 134, 12, (1661-1662), (2024)./doi/10.1161/CIRCRESAHA.124.324871
    Abstract
  2. Single-Cell Advances in Investigating and Understanding Chronic Kidney Disease and Diabetic Kidney Disease, The American Journal of Pathology, (2024).https://doi.org/10.1016/j.ajpath.2024.07.007
    Crossref
Loading...

View Options

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

Purchase this article to access the full text.

Purchase access to this article for 24 hours

Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics
Circulation Research
  • Vol. 134
  • No. 12

Purchase access to this journal for 24 hours

Circulation Research
  • Vol. 134
  • No. 12
Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF and All Supplements

Download PDF and All Supplements

PDF/EPUB

View PDF/EPUB

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share

Comment Response