Abstract TP445: Angiotensin Receptor Type 1 Deficiency Attenuates Brain Damage and Improves Outcome After Experimental Traumatic Brain Injury
Abstract
Inflammation which accompanies traumatic brain injury (TBI) can exacerbate neurological deficits. Thus, anti-inflammatory treatments have the potential to improve outcome. Angiotensin II receptor type 1 (ART1) mediates vasoconstriction, and its inhibition has been widely used to treat hypertension. However, recent work has suggested that it may also modulate apoptosis, and neuroinflammation. Thus, treatment with already available ART1 blockers may have additional neuroprotective value. We explore the contribution of ART1 to neuroprotection and brain hemorrhage in a model of TBI. Male, wildtype (Wt) and ART1 knockout (Ko) mice were subjected to TBI using controlled cortical impact (CCI). This model leads to reproducible traumatic brain injury with disruption of motor function and hemorrhage into the area of injury. Sensorimotor function (adhesive removal & elevated body swing tests), brain hemorrhage and lesion size were assessed at 3, 7 and 14 days. To explore the clinical relevance of ART1 in brain injury, we also gave Wt mice an ATR1 inhibitor (candesartan, 0.1mg/kg IP). We found that ATR1 deficient mice were protected from CCI as evidenced by decreased lesion and hemorrhage volumes (decreases of ∼40% in lesion size amongst Ko mice, n=6/group, p<0.05), improved neurobehavioral outcomes (n=6/group, p<0.05) and fewer activated microglia in Ko mice (p<0.05). This was also associated with decreased cytokine expression relative to Wt. Candesartan similarly protected against brain injury and improved neurological outcome out to 14 days post CCI (n=6/group, p<0.05). These data are consistent with the notion that ART1 contributes negatively to traumatic brain injury, and its inhibition or deficiency leads to improved outcomes and decreased immune responses. Considering the clinical availability of ART1 inhibitors, this approach may be a promising novel therapeutic target against TBI and related conditions including stroke.
Information & Authors
Information
Published In
Copyright
© 2016 by American Heart Association, Inc.
History
Published in print: February 2016
Published online: 16 February 2016
Keywords
Authors
Metrics & Citations
Metrics
Citations
Download Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.
View Options
View options
PDF and All Supplements
Download PDF and All SupplementsLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Personal login Institutional LoginPurchase Options
Purchase this article to access the full text.
eLetters(0)
eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.
Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.